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Abstract

A computationaUy efficient analysis approach is developed to predict the buckling of geodesicaUy

stiffened composite panels under in-plane loads. This procedure accounts for the discrete flexural

contribution of each stiffener through the use of Lagrange multipliers in an energy method solution.

An analysis is also implemented for the buckling of simply supported anisotropic rhombic plates.

Examples are presented to verify results of the stability analyses and to demonstrate their conver-

gence behavior.

Analysis routines are coupled with the numerical optimizer ADS to create a package for the design

of minimum-mass stiffened panels, subject to constraints on buckling of the panel assembly, local

buckling of the stiffeners, and material strength failure. The design code is used to conduct a pre-

liminary design study of structurally efficient stiffened aircraft wing rib panels. Design variables

include thickness of the skin laminate, stiffener thickness, and stiffener height. Applied loads are

uniaxial compression, pure shear, and combined compression-shear. Two different geodesicaUy

stiffened wing rib configurations with increasing numbers of stiffeners are considered. Results are

presented in the form of structural efficiency charts and are compared with those for minimum-

weight longitudinally stiffened panels and unstiffened fiat plates. Trends in design parameters, in-

cluding skin thickness, stiffener height, stiffener thickness, stiffener aspect ratio, stiffener load

fraction, and stiffener mass fraction, are also examined for the panels under compression and shear.

The effects of skin laminate geometry and anisotropy on the local buckling behavior of cross-

stiffened geodesic panels are examined using the rhombic plate analysis.
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1.0 Introduction

Flight performance of aerospace structures is highly weight sensitive. Reduction in vehicle struc-

tural weight allows more payload to be carried, improves fuel efficiency, and increases maximum

flight range. Weight reduction also has a multiplicative effect, in that decreasing the mass of one

component may allow a corresponding reduction in the mass of its neighboring structure, and so

on. Since design with metals is relatively mature, significant reduction in vehicle structural weight

will require resorting to materials with improved elastic and strength properties. For airframe ap=

plications the immediate future appears to lie with fibers such as graphite, boron, aramid, glass, or

any combination thereof, in a polymeric matrix. For rocket-type launch vehicles and fighter=type

aircraft, these materials have been adopted essentially without regard to cost. For their use to be

widespread in commercial aircraft, however, it must be demonstrated that composites are compet-

itive with metals, not just with respect to weight, but also from cost, reliability, durability,

repairability, and numerous other standpoints.

Concurrent with the adoption of advanced composite materials, innovative design concepts for

aircraft structures must be investigated to realize the full potential of these materials. At first glance,

the weight=specific stiffness and strength properties of the new generation fibers appear to be a

phenomenal improvement over metals. However, when their properties axe "diluted" by the requi=

site matrix material, off-axis ply orientation for damage tolerance, bulky joints, reinforcement

!
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aroundfast_ners,and so forth,theadvantagenarrowsconsiderably.Added tothisisthehighprice

ofraw material,labor-intensivemanual layupprocedures,and costlyautoclavingrequiredformost

compositematerialssystems.For thesereasons,thedirectreplacementofmetalswithcomposites

inexistingdesignsismarginallysuccessfulatbest.As farbackasthe 1940's,atternptshavc been

made toreplacemctaUicaircraftcomponents withfiber-reinforcedplasticequivalentsLThesefirst

attemptsendedinfailure,withtheplasticversionssignificantlyheavierthantheirmetalliccounter-

parts.Althoughthiswas due inparttoa lackofreallygood fiberand matrixmaterials,itwas also

attributableto theretentionof conventionalmetallicconstructionmethods usingmany separate

partsfastenedtogetherI. In more recenthistory,thesimilarpracticeoffasteningstandardquasi-

isotropicgraphite-epoxylaminatesdirectlyinplaceofmetallicsheetshasearnedthem thenickname

of"blackaluminum."

To put the problem of effective design with composites in perspective, it is worthwhile to briefly

discuss metallic structure design practice. Metallic aircraft structures have traditionally used a

framework of stiffeners running in two orthogonal, or near orthogonal, directions and covered by

a stressed skin. Examples include stringer=fib panels for wings and stringer-frame shells for

fuselages. The framework members are extruded, formed, or forged components connected together

and to the skin by thousands of fasteners. The unique requirements of rocket-powered vehicles in

the 1960"s caused a reassessment of this practice. The cylindrical wails for boosters had to be

leakproof and, of course, as light as possible. The first requirement led to the adoption of an inte-

grally stiffened shell structure for the case. The second requirement was met by the use of machined

stiffeners in a square array, sometimes called a "waffle plate." This orthogonal stiffening pattern can

carry certain loads very efficiently. However, it was noted that orthogonal stiffening patterns are

"inherently four bar links prevented from collapsing by the integral skin and as a result have little

in-plane torsional resistance capability. _ A NASA-sponsored research project by McDonnell

Douglas Astronautics Company concluded that the most promising alternative involved triangu-

lation of the stiffening members to form what was called "isogrid." Isogrid refers to the fact that a

grid of stiffeners forming equilateral triangles acts similar to an isotropic material. Isogrid was
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subsequently used on two major space programs, the Thor-Delta launch vehicles and Skylab, and

was tested for use on the Space Shuttlea.

Several advantages have been cited for the use of metallic isogrid, including ease of analysis, struc-

tural efficiency, damage tolerance, and maintainability _. The equilateral triangular grid of stiffeners

displays an overall isotropic nature and a Poisson's ratio of 1/3, which is similar to that of many

metals. In addition, the grid has many repeating cells so that smeared stiffener theory can be used

to mathematically transform the stiffened sheet into an equivalent homogeneous material. This

means that many existing analytical solutions for unstiffened isotropic plates can still be used for

isogrid design. With regard to structural efficiency, isogrid is claimed to display a high stiffness-to-

weight ratio and to be efficient for both in-plane and bending loads. For compression-loaded cyl-

inders, isogrid stiffeners were found to require less depth than a rectangular stiffening system for the

same load-carrying capability _. As a result, for the same interior size the isogrid-stiffened cylinder

had a smaller outside diameter and concomitant lower weight. An isogrid stiffener network forms

a complete structure able to support in-plane tension, compression, and shear and out-of-plane

bending loads. It can therefore be used either as stiffening for a skin or as an open lattice. It also

means that cutouts in an attached skin can be accommodated without excessive weakening of the

structure. Thirdly, the isogrid structure is considered highly damage tolerant due to the multiplicity

of load paths. Since the stiffener grid does not rely on the skin for support, shear and tensile loads

can be carried around a flaw by the redundant lattice system. It is also thought that if a separate

lattice and skin are bonded together, this will prevent crack propagation from one to the other.

Finally, applications requiring good torsional stiffness may use open isogrid rather than closed

torque boxes. This improves inspectability, access to all surfaces, and elimination of moisture

entrapment.

Since isogrid appears to be an efficient and practical structural configuration, its applicability to

modem composite structures has been studied extensively. McDonnell Douglas conducted a pro-

gram to test the feasibility of fabricating isogrid panels from short-fiber graphite and polyimide re-

sin. The project involved the development of molding equipment and procedures, material
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characterization, and fabrication of prototype panels. Compression testing of these panels, both

open lattice and with bonded skin, revealed that local imperfections seem to dominate the buckling

behavior 3. McDonnell Douglas later developed another isogrid panel which was claimed to possess

all the benefits of conventional isogrid stiffening as well as the advantages of high performance

composites 4. The new process involved weaving or braiding continuous fibers around a mandrel-

like tool to produce what was called "continuous fiber advanced composite isogrid" [CFACI]. In

addition to the structural advantages of continuous fiber placement, this process can be completely

automated. Automation allows economical fabrication and ensures uniform, high quality parts

which can be made in many different shapes. Scatter in experimental buckling loads for the pro-

totype panels revealed that consistent part dimensions are critical. However, the authors felt that

this would not pose a problem in a production environment'. Correlation of experimental bucking

loads and simplified theory gave reasonable agreement but indicated that transverse shear defor-

mation effects are significant 5. The weaving process renders the stiffeners nearly unidirectional,

which is efficient as they carry primarily uniaxial loads. At the same time, the transverse shear

stiffness is relatively low as it is largely dependent on matrix properties. An experimental study

involving the selective cutting of stiffeners in a compression panel revealed that CFACI is indeed

highly damage tolerant 6. It was further suggested that CFACI be used in applications prone to

foreign object damage. A detailed summary of the experimental procedures and data for the

CFACI tests can be found in the work by Reddy ?.

The studies on CFACI have demonstrated that filament-wound composite panels represent an ef-

ficient integrally stiffened structure, make maximum use of the superior properties and flexibility

of an advanced composite materials system, and are amenable to automated manufacturing tech-

niques. The result is a weight efficient, damage tolerant, economical structure. As mentioned ear-

lier, the isogrid concept was originally developed to improve the torsional stiffness of cylinders (or

shear stiffness of panels) over conventional orthogonal stiffening. It was also mentioned that isogrid

results in a structure which is essentially isotropic in nature, having no preferred stiffness direction.

While this may be appropriate for some applications (such as pressure-loaded domes or spheres),
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many _ have higherstiffnessand strengthrequirementsinspecificdirections.Indeed,the

proponents of isogrid concede that "there will be some applications where weight penalty may be

associated with isogrid's uniformity of configuration and isotropic stiffening.** As such, it is ex-

pected that the efficiency of stiffened composite structures may be improved by going to more

general stiffening arrangements, thereby further tailoring their properties to the application. This

is the basis of the "geodesic" stiffening concept, where reinforcement is provided by a regular array

of intersecting oblique stiffeners. Much as ply angles in a laminate are chosen to maximize certain

stiffness or strength characteristics, varying stiffener orientations permits considerable geometric

tailoring of component properties to the application. Geodesic stiffening still offers advantages in

structural efficiency due to triangulation of stiffening members, in damage tolerance due to multiple

load paths, and in production economy through fdament winding and preform manufacturing

techniques, which have been demonstrated for isogrid.

Research on filanlent-wound integral geodesic stiffening for aircraft pr_ary structure appears to

have focused primarily on fuselage applications. Of course, the large continuous cylindrical shape

lends itself to filament winding techniques and the potential for production efficiency improvements

through reduction in number of parts and fasteners is enormous. For example, a prototype

geodesically stiffened fuselage section with integral bulkheads for the all-composite Beech Starship

has been fdament wound in only a few hours s. The geodesically stiffened fuselage concept is com-

pared to a conventional fuselage in Figure 1. Flat, integrally stiffened panels such as wing spars,

ribs, and covers (Figure 2) are also under consideration for use as primary load-bearing structure

in future transport aircraft. Advances in automated material placement, such as filament winding

techniques for CFACI, have meant that noncylindrical components of many shapes can be manu-

factured economically. The details of an L,movative manufacturing process for the geodesically

stiffened wing spar are shown in Figure 3.

Additional work is required to make the best use of geodesically stiffened composite panels, par-

ticularly in the areas of structural analysis and design. To this end, the goal of the present research

work is to examine methods for the analysis and design of flat, geodesicalIy stiffened panels under

5
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in.planeloads. Theg_desicstiffeningconceptis then appfied to the design of a representative

alrcrai_ structural component. To outline following chapters, Section 2.0, Design Study Methods,

describes the aircraft component, a wing rib panel, chosen for the study and how it is modelled.

Currently available structural analysis and design methods are reviewed for their applicability to this

problem. The need for and subsequent development of a new design code developed as part of the

research work are then described. Finally, the scope of the design study is outlined. Section 3.0,

Analytical Development, describes in detail the theory behind the the analysis methods used in the

design work. In Section 4.0, Verification and Examples, the analyses developed in Section 3.0 are

compared against established analysis methods and published results, where they exist, for verifica-

tion. Convergence studies are also conducted to demonstrate how analysis parameters can affect

the results. In Section 5.0, Wing Rib Design Study Results, the new design code is used to conduct

an optimization study seeking minimum-weight designs for the'wing rib panel. Two geodesically

stiffened configurations with varying numbers of stiffeners are designed for axial compression, shear,

and combined loads and compared with equivalent flat and longitudinally stiffened panels. Results

of the research work are summarized in Section 6.0, Concluding Remarks.
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2.0 Design Study Methods

As suggestedintheintroduction,theapparentadvantagesofapplyinggeodesicstiffeningconcepts

to compositestructuralcomponents includehigh stiffness-to-weightratio,tailor'ability,damage

tolerance,and economy ofmanufacture.Inordertoexaminetheconceptfurther,a representative

aircraftcomponent isto be designedwithgeodesicstiffening.Therefore,computationallyefficient

means ofperformingstructuralanalysisand preliminarydesignoptimizationofthiscomponent,an

aircraftwing ribpanel,axesought.In Section2.I,thegeometryand loadparametersfora typical

wingribareintroduced.The manner inwhichthewingribismodelledforthepresentstudyisalso

outlined.In Section2.2,thechoicesinavailabledesigncodesand structuralanalysismethods for

usewithgeodesicallystiffenedpanelsaxereviewed.The needtodevelopanew designcodeand the

basisfortheanalysisapproachofthatcodeaxesubsequentlypresented.Finally,inSection2.3,the

scopeofthepresentdesignstudyisestablished.
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2.1 Geodesically Stiffened Wing Rib Panels

A promising application for geodesic stiffening concepts appears to be the wing rib panel for a large

transport aircraft (Figure 4). Essentially a wing rib is a short stiffened panel which separates the

upper and lower skins of an aircraft wing. The wing rib under consideration is similar to a center

wing box rib of a Lockheed C-130 transport aircraft. The rib closes a large torque-box formed by

spars fore and aft and wing skins with stringers top and bottom. Aerodynamic loads acting on the

wing surfaces and forces due to engines, fuel load, and so forth result in bending and twisting of the

wing structure. Bending of the wing causes axial compressive loading of the rib, whereas twisting

introduces shear loading. Some wing ribs also act as fuel cel close-out panels where they receive

significant pressure loading from the fuel.

For the present study, the wing rib is modelled as a rectangular panel 80 inches wide in the wing

chord direction and 28 inches high in the wing thickness direction (Figure 5). The panel incorpo-

rates a grid of integral blade stiffeners of constant rectangular cross-section. In view of the current

trend towards fdament winding manufacturing techniques, the stiffeners are assumed to be com-

posed of unidirectional material oriented along each stiffener axis. Design details, such as stiffener

flanges, intersection preforms, or stiffener wraps (as shown in Figure 3) are not considered. To

eliminate bending-extension coupling, the skin is symmetrically laminated and stiffening ribs axe

located on both sides of the skin, symmetrical about the midplane of the skin laminate. This should

not be an entirely impractical configuration, as a wing rib is not bound by any aerodynamic re-

quirement to have one smooth surface. Also, the elimination of bending-extension coupling can

improve the buckling performance of a component under axial load. To eliminate extension-shear

coupling, the skin laminate is balanced (angle plies occur in + 0 pairs only) and oblique stiffeners

occur in pairs oriented at equal but opposite angles with respect to the panel coordinate axes.

Regarding boundary conditions, the actual degree of elastic restraint against edge rotation around

the perimeter of the wing rib is unknown and no doubt complex. To assure conservative designs,
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the panel edges are treated as simply supported. Also, it is assumed that the structure surrounding

the panel is sufficiently rigid that the overall panel extensional deformation in the X direction (due

to Poisson effect under axial compression Ny) is zero. This assumption does not affect shear re-

sponse as there is no coupling between shear and extension for the panels under consideration.

Further discussion of assumptions regarding the geometry and boundary conditions, plus their ef-

fect on the analysis, may be found in Section 3. Finally, the uniform applied loads considered are

uniaxial compression N_, pure shear N_y, and combined compression-shear. Transverse pressure

loading, due possibly to an adjacent fuel cell, is not considered.

Four prospective configurations are considered for the wing rib panel: unstiffened fiat plate,

longitudinally stiffened panel, diagonally stiffened panel, and cross stiffened panel (Figure 6). The

performance of the geodesically stiffened (diagonal and cross) arrangements will be evaluated using

the more conventional flat plate and longitudinally stiffened panel for comparison. In Figure 6, the

shaded portion of each stiffened panel indicates what is defined as a unit stiffened cell. It should

be noted that this definition is arbitrary, but was chosen such that the edge distance between

stiffeners is roughly equal between geometries with the same number of cells. Also, the maximum

wavelength of inter-stiffener skin buckling modes is approximately equal for all three stiffened

configurations. Each panel can have any number of stiffened cells (except for the longitudinally

stiffened panel, where the one cell case is undefined).

2.2 Analysis and Design Tools

Preliminary design optimization studies are typically conducted using computerized design codes,

which consist of two parts. The path taken by the design is controlled by an optimizer which at-

tempts to improve the design, where "improvement" is generally defined as reducing the mass of the

component. The optimizer varies specified design variables in accordance with mathematical opti-
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mizationprinciplestominimizethemasswithoutviolatingtheimposedconstraints.For structural

optimization,the constraintsaregenerallylimitson buckling,vibration,deflection,orfracturebe-

haviorofthecomponent. Inconductingthedesignstudyaprimaryconsiderationiscomputational

efficiencyintheanalysispackage.Thisisdue tothefactthattheanalysisoI_enmust be conducted

many timesoverduringthecourseofatypicaldesignrun.On theotherhand,realisticand reliable

constraintsmust be imposed on thedesignto prohibitinfeasibleconfigurationswhich would fail

tomeet thedesiredperformancecriteria.

For complexcomponent geometries,detailedstructuralanalysisgenerallyrequirestheuseoffinite

elementanalysistechniques.Unfortunately,foroptimizationpurposesfiniteelementanalysisis

computationalIytoo expensiveand any changein planformgeometryrequireslaborious,often

manual,remeshing.As a result,designcodeshave oftenincorporatedanalyseswhich model the

panel as an assemblageof rectangularplatesforwhich closed-formor simplecomputational

bucklingsolutionsexist.One suchcodeisPANDA2 _,which findsminimum-weightdesignsfor

fiatorcurvedpanelsor cylindricalshellswithstiffenersinone or two orthogonaldirections.An-

otherwidelyused designcode isPASCO [PanelAnalysisand SizingCode]_3,which incorporates

theoptimizerCONMIN [ConstrainedMinimization]and theanalysiscodeVIPASA [Vibrationand

InstabilityofPlateAssembliesincludingShearand Anisotropy]_4.PASCO was used ina recent

researchprojectby Swansonn to conductan extensivestructuralefficiencystudyoflongitudinally

corrugated,hat-stiffened,and blade-stiffenedwingribpanelsundercompression,shear,and trans-

versepressure.Swanson alsoused VICON [VipasawithConstraintsps to correctforshearand

anisotropyeffectswhich may causeVIPASA to giveoverlyconservativebucklingresults.The use

ofthesedesignpackagesforgeodesicconfigurationsis,however,notpossibleastheyareincapable

ofmodellingpanelswithstiffenersthatarerotatedwithrespecttothe paneledges.The apparent

lackofa suitabledesignor analysiscode leadsto theconclusionthatitisnecessaryto developa

procedurewiththecapabilitytomodel panelswithnon-orthogonal,oroblique,stiffeners.

The first step in developing an analysis procedure is identifying the relevant constraints which must

be considered. Based on the results of previous studies for stiffened panels under in-plane loads,
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four dominant failuremodes have bccn isolated.The firstfailuremode isglobalbuckling,where

the skin and stiffenersdeflectout-of-planeas one (Figure 7). The second mode, local skin

buckling,occurs when the stiffenersdeflectlittle,but the inter-stiffenerskin sectionsbuckle. The

thirdpossiblemode addresseslocalbucklingor cripplingofthe blade stiffeners.The fourthand final

failuremode consideredismaterialfailure,where the strengthofthe materialinthe skinor stiffeners

isexceeded.

Itisquitepossiblethat atthe stiffenerintersectionpoints therearc highly localizedand complex

(possiblythree-dirncnsional)stressconcentrationsthatcan cause failureof thesepanels.However,

for a preliminarydesign study ofthisnature,inclusionof such failuremodes may not bc possible

because of the degree of difficultyof the analysis.Due to the complex geometry of geodesically

stiffenedpanels,the theory used for structuralanalysis(especiallyfor preliminarydesign)isoften

approximate. For example, a geodcsicallystiffenedcylindricalshcU was designed by Reddy, etalt6

subjectto constraintson generalinstability,skin buckling,and ribcripplingonly. For generalin-

stability,constitutiverelationsforthe stiffenedshellwere found by smearing out the stiffenersand

representingthe cylinderasa homogeneous shell.Standard methods for the buckling of cylindrical

shellswere then used. For localskin buckling,the inter-stiffenerskin sectionwas treatedas an

orthotropictriangularplatewith simply-supported edges under in-planeloads,for which an ap-

proximate buckling solutioncan be found. Finally,the cripplingload forthe ribswas estimated

using an approximate formula forthe buckling of an orthotropicplatewith fixedends and simply-

supported and freeedges.A similarapproach has alsobeen used by Stroud and AgranoIP 7to model

longitudinallycorrugatedand hat-stiffenedpanels asassembliesof orthotropicplateelements.

An approach analogous to those described above was explored initially for the analysis of the

geodesically stiffened panels in this study. A solution for the crippling of orthotropic stiffeners had

recently been derived and implemented tg. As opposed to the study of Rcddy, et al, where only

equilateral triangular plates were considered, the geodesic panels of the present study, as shown in

Figure 6, have subsections which arc both rhombic and isosceles triangular in shape. A detailed

analysis for the buckling of anisotropic rhombic plates was therefore developed by the author. A
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solution for orthotropic isosceles triangular plate buckling exists in the literature, although it does

not satisfy boundary conditions completely due to the shape of the plate and the existence of

anisotropic coupling terms tg. The main difficulty of the present study, however, existed in the

global buckling analysis. As mentioned earlier, for the analysis of grid-stiffened panel configurations

many analysts resort to a smeared stiffener approach which represents the skin-stiffener assembly

as an equivalent homogeneous orthotropic plate. This approximation is acceptable iS there are

many closely spaced stiffeners whose dimensions are small with respect to those of the panel. The

geodesic wing rib panel designs under consideration, however, have only a few stiffeners per panel.

For a small number of stiffeners the smeared stiffener approach is expected to result in considerable

elTor.

The solution of panel buckling problems where the discrete contribution of each stiffener is ac-

counted for has been explored fairly extensively in the literature for orthogonally stiffened panels.

However, the energy approach used by the majority of these studies becomes too unwieldy for

stiffeners which are rotated with respect to the panel edges. Therefore, an indirect procedure using

Lagrange multipliers has been developed which can accommodate oblique stiffeners at any arbitrary

orientation. (The formulation of the Lagrange multiplier method [LMM] analysis is described in

detail in Section 3.2.1). Previously it was mentioned that the global instability mode and local skin

buckling modes were to be considered via independent analyses. The LMM buckling analysis will

account for both of these forms of instability, including intermediate modes where the deflected

shape is a combination of both global and inter-stiffener skin buckling. (It will be shown in Section

4.1.2 that the buckled shape depends on the relative bending stiffnesses of the skin and stiffeners).

A requirement of the LMM procedure is that the distribution of in-plane loads must be known

before the stability analysis can be performed. Although a prebuckling static analysis using a finite

element code would provide this information, it would be advantageous to eliminate it so that

limitations related to mesh generation would not be encountered. The smeared analysis approach

of Reddy, et al 1+has therefore been used to obtain the load-distribution information. It should be

emphasized that their approach was to smear both the in-plane and flexural properties of the stiff-
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ened panel; here only the in-plane properties are smeared, while the out-of-plane contributions of

the stiffeners remain discrete. Comparison of the smeared analysis with a finite element program

indicates that the smeared analysis gives good results for the in-plane load distribution. As such, the

smeared approach has been adopted for the static analysis portion of the LMM buckling analysis.

The load distribution results are also used to estimate stresses and strains in the panel components

for use in the material failure analysis.

At the present time, the LMM buckling analysis can model only a specially orthotropic skin lami-

nate, i.e. the effects of bending-twisting coupling terms D_ and D2_are not accounted for. The effect

of these terms can be significant, resulting in reduced buckling loads and, in particular, causing

sensitivity to the direction of applied in-plane shear 2°a_. As such, the rhombic plate analysis which

has been developed will be retained to estimate the effect of these terms. The rhombic analysis will

not be incorporated into the design code, but instead will be used to analyze the final designs.

To summarize, three design constraints are considered in the structural analysis routines. These are

buckling of the panel assembly, local buckling of the stiffeners, and material strength. The in-plane

load distribution for the panel is estimated by smearing the stiffeners. Using the LMM analysis, the

buckling load for a rectangular orthotropic plate with a number of oblique stiffeners is predicted.

Buckling of the stiffeners is estimated by modelling the blade as a rectangular orthotropic plate

under uniform axial compressive load. Finally, material failure in the skin or stiffeners is estimated

using a maximum strain criterion.

The analysis capability described above is coupled with the general purpose optimization package

ADS [Automated Design Synthesis]" to seek minimum=weight designs for geodesically stiffened

panels subject to the aforementioned constraints on buckling and material failure. The name given

to this new package is PANSYS (Panel Synthesis System). ADS allows several choices for each

of the three parts (strategy, optimizer, and one-dimensional search) of the solution to the con-

strained optimization problem. ADS also permits many of the parameters governing convergence

to be changed from the default values. Algorithm choice and any over-tiding of default parameters
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axe easily specified in the input fde to PANSYS. An example input fde for PANSYS is shown and

explained in Appendix A.

2.3 Scope of Design Study

The overall objective of the design study is to seek practical, minimum-weight designs for stiffened

wing rib panels. Section 2.2 described the actual wing rib, the assumptions and limitations in the

modelling, and the four geometries which would be considered. The scope of the study, using the

design code PANSYS, is now outlined.

Optimum designs are sought for the two geodesic panels (diagonal and cross, see Figure 6) and the

longitudinally stiffened panel. Although a fiat plate is also considered, the design problem is trivial

as there is only one design variable. The number of stiffened cells is varied incrementally up to a

maximum of eight cells per panel; the complete range of panel geometries in the study is shown in

Figure 8. The design variables are the skin thickness, stiffener height, and stiffener thickness. Only

one skin laminate is considered, with a quasi-isotropic lamination sequence of 1-45/45/90/01s and

all plies of equal thickness. A minimum-gauge constraint of 0.040 inch is imposed on the thickness

of the skin and stiffeners. Three levels of external loads axe applied in uniaxial compression and

pure shear: 100, 1000 and 10000 pounds-force per inch (lbf/in). For eight cell stiffened panels and

the fiat plate, a combined compression-shear case with loads ranging from 100 to 30000 lbf/in (the

latter a worst-case loading scenario) is also considered.

Properties of a typical graphite-epoxy material system (Hercules AS4/3502) are used in all analyses.

Material properties for the stiffeners are assumed to be the same as those for the skin laminae. Since

the maximum strain theory is used to predict material failure, the material strengths are expressed
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in termsof maximum allowable strain values. The elastic, strength, and physical properties used

in the design study are shown in Table 1.

Table I. AS4/3502 Graphite-Epoxy Material Properties

Elastic Properties:

Longitudinal Modulus
Transverse Modulus
In-Plane Shear Modulus
Transverse Shear Modulus
In-Plane Poisson's Ratio

Strength Properties:

Longitudinal Tensile Strain Allowable
Longitudinal Compressive Strain Allowable
Transverse Tensile Strain Allowable

Transverse Compressive Strain Allowable
Shear Strain Allowable

Physical Properties:

Mass Density

E I = 18.5 x 106 lbf/in 2
Fa = 1.64 x 106 lbf/in 2
Gt_ = 0.87 x 106 lbf/in _
G23 = 0.54 x 106 lbf/in 2
vt2 = 0.30

_[ = 0.0090
_ = 0.0080
_ = 0.0055
e_ = 0.0290
_. = 0.0250

p = 0.057 Ibm/in 3

Sources of Data: Swansonll, Knight23, Sensmeier, et al
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3.0 Analytical Development

The purpose of the analysis portion of a design code is to provide meaningful constraints on the

design so that it will be feasible, i.e. not suffer structural failure under the applied loads. Three

limiting failure modes for flat and stiffened panels are considered in the present analysis procedure.

The first failure mode is material strength, where first-ply failure in the skin or stiffeners is assumed

to occur when specified strain values are exceeded. This procedure is discussed as part of the static

analysis, Section 3.1, which considers in-plane deformation behavior of the panel. The second

failure mode is panel buckling, where the skin and stiffeners deflect out-of-plane, transverse to the

surface of the panel. The third and final failure mode concerns local buckling or crippling of the

stiffeners. Buckling of flat and stiffened panels and stiffener crippling are treated in Section 3.2.

Section 3.3 considers the buckling of an anisotropic rhombic plate. This analysis is not incorpo-

rated into the design code, but instead is used post-design to estimate the effect of anisotropic

coupling terms which the panel buckling analysis of Section 3.2 does not account for. The rhombic

analysis is also used to examine the effects of skewing and laminate geometry on the local buckling

behavior of the rhombus-shaped skin sections in the cross-stiffened panels.
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3.1 Static Analysis of Stiffened Panels

In order to perform strength or buckling analyses on geodesically stiffened panels with the present

approach, it is necessary to determine how externally applied loads are distributed between the skin

and each of the stiffeners. In Section 3.1.1, simple smeared stiffener theory is used to derive ap-

proximate constitutive relations for the in-plane behavior of the three stiffened panel configurations

under consideration. In Section 3.1.2, information from the load-distribution calculations is used

to perform the material failure analysis, where ftrst-ply failure in the skin or stiffeners is predicted

using a maximum strain criterion.

3.1.1 Load Distribution Analysis

In smeared stiffener theory, the contributions of the stiffeners to the in-plane response of the panel

are averaged out so that the stiffener network is represented as a uniform fiat sheet with appropriate

elastic properties. This allows force-displacement relations (equivalent to the [A] matrix in classical

lamination theory) to be derived for the overall in-plane behavior of a stiffened panel. In the deri-

vation, the smeared theory is applied to the in-plane elastic analysis of a single stiffened unit. It is

assumed that the behavior of this unit is representative of the overall response of a panel with re-

petitive geometry. Restrictions on the geometry and basic assumptions behind the static analysis

are listed below. A discussion of the reasons for adopting these conditions and their implications

follows.

1. The skin is symmetrically laminated. Identical stiffeners are located on both sides of the skin,

symmetrical about the midplane of the plate.

2. The skin laminate is balanced. Oblique stiffeners occur in pairs oriented at equal but opposite

angles with respect to the panel coordinate axes.
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3. Panel deformations do not violate small displacement theory.

4. Panel supports are sufficiently rigid to ensure that the deformed panel shape remains a

parallelogram under axial or shear loading. Extensional deformation of the panel in the X di-

rection is assumed to be zero.

5. Stiffeners are treated as isolated structural elements which carry only axial forces. It is assumed

that stiffeners have zero flexural stiffness for bending in a plane parallel to the surface of the

panel.

The first assumption is a fundamental requirement in applying a linear theory to determine the

internal load distribution for the panel at its critical load. It is well known that laminated plates

symmetric about the midplane in all respects have no coupling between in-plane extension and

out-of-plane bending (i.e. B_ = 0). Similarly, placing identical stiffeners on both sides of the skin

will preserve this symmetry, and the global response of the panel will not exhibit bending-extension

coupling. For plates in which bending-extension coupling is present, in-plane loads will result in

large out-of-plane deformations. The buckling problem requires the solution of coupled equations

governing both the in-plane and out-of-plane response. However, for symmetric geometries the

in-plane and bending problems uncouple and the buckling problem can be solved by considering

just the out-of-plane deflection w. Also, a linear deformation theory based on the unbuckled ge-

ometry of the panel can be used to determine the internal load distribution of the stiffened panel

at the critical point.

The second assumption eliminates a second form of coupling, but is imposed for practical design

reasons. Laminates with off-axis plies which do not occur in ± 0 pairs are unbalanced and will have

nonzero A16 and A26 stiffness terms. These terms imply coupling between in-plane extension and

in-plane shear deformations, which is generally not desirable behavior for most structural applica-

tions. Analogous to balancing plies in a laminate, placing oblique stiffeners in pairs at equal but

opposite angles will cancel their tendency to induce extension-shear coupling. In addition, the

balanced stiffener placement minimizes the directional sensitivity of the panel for buckling under

shear loads. This results from the stiffener network having an equal number of stiffeners in tension
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and compression under positive and negative shear. (Sensitivity to shear direction will still occur

in the buckling analysis from bending-twisting coupling if the skin laminate has nonzero D16 and D_

terms. This topic is discussed in greater detail in Section 5.3).

The third assumption simplifies the geometrical aspects of the problem and permits multiple loads

to be considered via superposition. In deriving equations governing the equilibrium of elastic

bodies, it is common to make no distinction between the form of the body before loading and the

form of the body after loading. This assumes that the usually small deformation displacements do

not significantly affect the action of the applied forces. If this assumption is reasonable, calculations

can be carried out based on the initial undeformed plate geometry. The small displacement as-

sumption must also be valid in order to justify applying the principle of superposition to determine

total displacements under the action of multiple external loads. This principle states that the total

displacements of a body are merely a linear combination of the displacements observed when each

load is applied independently z.

The fourth assumption reflects an idealization of the actual restraint conditions at the edges of the

panel. The stiffened panels under consideration are intended to be representative of a rib panel for

the wing of a large transport aircraft. A typical load scenario for this panel is compression in the

Y direction due to bending of the wing. Under this loading, the panel will attempt to expand or

contract in the X direction due to the Poisson effect. In geodesically stiffened panels of the type

currently under investigation, this effect may be severe due to %cissoring" of the stiffeners. When

the panel is installed in an aircraft it would be bounded by a network of spars, stringers, and wing

covers. In-plane deformation of the panel is, therefore, restrained to a certain degree by the sur-

rounding structure. However, in the present analysis it is convenient to simplify the degree of re-

straint by assuming that the panel edges perpendicular to the X axis are either completely fixed in

the X direction or free of any restraint in the X direction. Clearly, these assumed boundary condi-

tions represent two extremes which bound the actual degree of elastic restraint. The fixed or zero-

transverse-deformation condition has been chosen as it is believed to be closer to the actual degree

of restraint, whereas the restraint-free condition will result in excessive stretching of the panel skin
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due to stiffener scissoring. It is important to note that the preceding assumption does not affect

shear response as there is no coupling between shear and extension for the panels under consider-

ation (see Assumption #2).

The fifth and final assumption simplifies estimating the internal distribution of loads in the stiffened

panel. In the actual structure, where the skin and stiffeners form an integral unit, the stress dis-

tribution is very complex. By ignoring any interaction between the skin and stiffeners, and between

stiffeners where they cross (i.e. components are assumed to be able to slide across one another), the

panel can be treated as a truss on top of a flat plate, connected only at the panel perimeter. That

is, compatibility of global strains and equilibrium of forces between the stiffener network and the

skin are only enforced at the outside edges of the panel.

There are four steps in the load distribution analysis. The first step is to define the constitutive

equations for the panel skin, which are given by classical lamination theory. The next step is to

calculate equivalent constitutive relations for the stiffener network, which is done through a smeared

stiffener analysis. Third, superposition of the skin and stiffener properties yields the stiffnesses for

the panel as a whole. Finally, for a given external load, the internal loads on the skin and each

stiffener are calculated. This distribution will be dependent on the relative stiffnesses of the skin

versus the stiffeners and on the boundary conditions imposed on the panel.

Skin Constitutive Equations

The constitutive equations for a general laminate with multiple orthotropic plies at arbitrary ori-

entations, as defined by classical lamination theory, are :_

(1)

where (N} and {M} are vectors of in-plane force and moment resultants, {_}and {K}are strain and

curvature vectors, and the zero superscript denotes midplane quantities. For a symmetric laminate
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(Assumption #1) all coupling stiffnesses B U are zero and the in-plane extension and out-of-plane

bending relations uncouple. Since the in-plane behavior is to be examined, the required force re-

sultants are

.

Nx At1 A12

{Ny} = A12 A22

LA, 

AI6 _x

A66 Yxy

(2)

where the zero superscript can be dropped as no laminate bending is involved. For a balanced

laminate (Assumption #2), where every + 0 ply is matched by an identical - 0 ply, the extension-

shear coupling terms A,6 and A26 vanish, leaving

o

{N;}-- o
G o

_X

{..}
Xxy

(3)

where the superscript P has been used to indicate that these stiffness coefficients and force resultants

are those for a plate, referring to the skin of the stiffened panel. Note that the strains do not carry

a superscript, as the strains for the skin are assumed to be identical to those for the panel as a whole.

Stiffener Constitutive Equations

The objective is to develop a set of constitutive equations, similar to those shown in Equation (3)

for the skin, which will predict the overall force-displacement behavior of the stiffener network. To

achieve this, the behavior of a single representative unit is examined.

Longitudinally Stiffened Panel: The effective width a, over which the influence of one stiffener

will be uniformly distributed or "smeared", is the panel width divided by Ihe total number of

stiffeners (Figure 9). The total cross-sectional area of the stiffener is denoted by A. The first step
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is to relatetheaxialstrainin thestiffenerre to the global panel strains c,, % and _z,. Clearly, since

the stiffener is parallel to the Y axis, the axial strain component is simply

_e=_y (4)

Note that _e is a function of neither e. nor _,. The total axial force in the stiffener Fis found merely

by multiplying the stiffener axial strain by the axial elastic modulus Et and the cross-sectional area

of the stiffener

F= A_A_t) = AE:y (5)

The stiffener axial force is now smeared over the effective width a to calculate an average stress re-

sultant

F AEtey
Ny- a - a (6)

The constitutive relations for the longitudinal stiffener can now be expressed in standard matrix

form as

[ 00
N_ o o

£X

Yxy

(7)

where the S superscript denotes values for the stiffener, and the sole non-zero coefficient is

A_ Ae,- a (8)

Cross-Stiffened Panel: The unit for a cross-stiffened panel is shown in Figure 10. The effective

width a is the panel width divided by the number of cells per panel. The stiffener angled upwards

and to the right at angle + _b is designated as stiffener # 1, and the second stiffener, angled down-

Analytical Development 30



Y

I
I
I
I a=

I
I

I_. a _ X

(Panel Width)

(No. of Stiffeners)

Panel Height

L-

' ' Stiffener

Cross-Sectional

Area A

F____

Section A-A

Ny

t _ Nx,

(A)

(B)

Figure 9. Longitudinally Stiffened Unit for Load Distribution Analysis: A) Geometry B) Equilibrium
of Stiffener Forces
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wards and to the right at angle - 4', is stiffener #2. The total cross-sectional area of each stiffener

of the pair is the same and is denoted by A. The approach is the same as that for the longitudinally

stiffened example, but it is comphcated by the fact that the stiffeners are not parallel to the coordi-

nate system. As before, the strains for the panel, and therefore the representative unit, in the x -y

coordinate system are denoted by _._,_y,y_. The strains in a local coordinate system aligned with

the stiffener can be determined using the standard strain transformation 56

_e [ cos20 sin20 sin 0 cos 0

I rt _ = -sinOcosO

3 l sin20 C0520

)
Yet -2 sin 0 cos 0 2 sin 0 cos O cos20 - sin20

(9)

where _¢denotes the strain component parallel to the stiffener axis or longitudinal direction and _,

the component perpendicular or transverse to the stiffener. In accordance with Assumption #5,

where stiffeners carry axial loads only, the axial component of strain for each stiffener is the only

quantity required. To calculate the axial strain component for stiffener # 1, the angle + 4' is inserted

in the ftrst line of Equation (9), giving

_1 =cos24'Cx + sin24'_y +

=C2_x + s2_y + SCYxy

sin 4' cos 4'y,_
(10)

where s and c are shorthand notations for sin 4' and cos 4', respectively. To calculate the axial strain

component for stiffener #2, the angle - 4' is now inserted in the first line of Equation (9) to give

_2 = cos2( - 4')_x + sin2( - 4')_y

= C2_x + S2_y -- SC Yxy

+ sin( - 4') cos( - 4')y_
(11)

Note that Equations (I0) and (11) differ only in the sign of the shear strain coefficient. Stiffener

axial forces are found by multiplying the axial strain for each stiffener by the axial elastic modulus

Ee and cross-sectional area A
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FI = AEe (C2ex + s2_y + sc Yxy)

F2 = AE¢ (c2_x + s2_y - sc Yxy)
(12)

Stiffener axial forces are now resolved into orthogonal components, as indicated in Figure 10-B.

Looking at the vertical edge of the unit, the force components in the x direction are Ft cos 4' and

F: cos _b. Summing these two force components gives the total force in the x direction, F,. Sub-

stituting for FI and F2 from Equation (12) to get the expression in terms of strains gives

Fx = El cos _ + F2cos

= [,,IEe (C2_x+ s2_y + sc _xy)] cos

= _E e (c3_ + cS2_y)

+ [AE¢(c2ex+s2*y-SCyxy)]cos_b (13)

It is important to note that the dependence on the shear strain drops out. An average force resultant

for the stiffeners is again constructed by smearing the total force in the x direction along the vertical

edge of the unit. The force per unit length along the vertical edge is finally

Nx = F x _ 2AE¢ (c3 x + cs2y ) (14)
b b

A normal force resultant Ny in the y direction is derived in the same manner as Nx. Summing force

components along the horizontal edge of the unit, distributing the result over the distance a, and

simplifying gives

Fy WEe (sc2_ + S3_e) (15)Ny = ---if-_ a

To determine the shear force resultant, the forces tangential to either the horizontal or vertical faces

of the unit can be used with identical results. Considering the vertical edge of the unit, the tangential

force components are FI sin 4' in the positive y direction and F_sin q_ in the negative y direction

(Figure 10-B). Substituting F_ and F2 from Equation (12) gives
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F_,= Vz sin4, - V2sin4,

= fAEe (C2,x+ s2,y + sc_,_)] sin 4,

= 2AEt (¢s2yxy)

- [AEe (c2_x+ s2_y- scy_)] sin 4, (16)

with the related force resultant following

Nx,=Vxy 2AEeb - b (cS2yxY) (17)

Note that the shear force resultant depends solely on the shear strains. Clearly, Equations (14),

(15), and (17) show that there is no coupling between axial and shear response. The constitutive

relations for the crossed stiffeners can be expressed in the standard matrix form as

,'¢I [A,_,As: 0

°I
A_

,t
Yxy

(18)

where the S superscript again denotes values for the stiffener network, and the coefficients are de-

freed as

As' _ zae,bc3 Af:- zaE,bc_:

sc2 As _ s3

As 6 = 2AE_, cs 2
b

(19)

Note that the relationships for At2 and A:L appear different. However, the geometric relationship

s _ c can be used to show that A2_ = At2 and thus the matrix is indeed symmetric, as expected.b a

Dia2onally Stiffened Panel: Fortunately, results for'the cross stiffeners can be adapted, making it

unnecessary to repeat the derivation process for diagonal stiffeners. In Figure 11 a diagonally

stiffened panel with one cell is compared with a cross-stiffened panel with two cells. Through
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Figure 10. Cross-Stiffened Unit for Load Distribution Analysis: A) Geometry B) Equilibrium of
Stiffener Forces
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superposition, it is demonstrated that the crossed stiffener network in the right-hand column is

merely a combination of two mirror-image diagonal stiffener networks in the left-hand column.

Taking into account the differences in number of stiffeners and effective widths, equivalent stiffness

coefficients are obtained for the diagonal network.

Panel Constitutive Equations

Now that constitutive relations are available for both the skin and the stiffener networks, it is pos-

sible to derive equations which predict the response of the panel as a whole. If it is assumed that

the stiffener network and skin experience identical strains, equilibrium considerations indicate that

the force resultants for the panel will merely be the sum of those for the skin and the stiffeners, i.e.

Ux=Uf+
+U/

p S+

(20)

From this it follows that the stiffness coefficients are also sums of those for the skin and stiffeners.

Therefore the panel constitutive relations may be summarized as

Nx All A12 0

{Ny}=2A220

N_ 0 A66 7xy

(21)

with

At1= A_t + AS_

A22 = A_2 + AS

An = A_2 + AS2

A66 = A6_ + As
(22)

Explicit expressions for the A_ terms are given in Equation (8) for the longitudinally stiffened panel

and in Equation (19) for the cross-stiffened panel.
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Internal Load Distribution

In following sections, it will be necessary to know what portions of the external loads on the panel

axe carried by the skin and by each stiffener. The derived stiffnesses for the skin, stiffeners, and panel

can be used, in conjunction with the assumed boundary conditions, to estimate this internal load

distribution. As was discussed in Assumption #4, a boundary condition of zero extensional defor-

mation in the X direction has been assumed.

The overall panel response to an applied axial load N, is first determined. To isolate the compressive

response, a shear load of Nxy = 0 is assumed. In accordance with the assumption of zero transverse

deformation, ,, is set to zero. Substituting these conditions in Equation (21) and solving for the

resulting strains gives

*x 0

)'xy 0

(23)

It is assumed that the skin experiences uniform strains identical to those of the panel as a whole.

Therefore, the global strains in Equation (23) axe substituted in the skin constitutive Equations (3)

to calculate the force resultants acting upon the skin or plate

Nx =\ A22 } Y

N;=\ )N,
P

Nxy=0

(24)

For panel buckling and stiffener buckling analyses in Section 3.2, the axial stiffener forces axe re-

quired. To find the axial load for the longitudinal stiffener, the strains in Equation (24) are substi-

tuted in Equation (5), giving
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(25)

Using the definition of A s in Equation (8), this can be rewritten as a ratio of the stiffener and skin

stiffnesses

(26)

For the crossed stiffeners, the global strains in Equation (24) are substituted in Equation (12) to fred

F1 and F2. They are then rewritten in terms of the stiffnesses using the definition of AS in Equation

(19) with the result

(27)

Note that Ft = F2, as expected from symmetry. The axial loads for the diagonal stiffeners follow

from those for the crossed stiffeners.

The panel, skin, and stiffener responses to shear are determined in the same manner as the axial

response. The global response to the applied shear load N,, and %= N, = 0 is, from Equation (21)

_x 0

{}:{ } (28)

Substituting the strains of Equation (28) in Equation (3) gives the shear loads on the skin
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NxP=0

cP
Ay = 0

(29)

The stiffener axial forces due to the applied shear load are also found. In Equation (5) the axial

force for a longitudinal stiffener is only dependent on _). Since _) = 0 in Equation (28) for shear

loading of the panel, the longitudinal stiffener axial force is zero and the entire shear load is carried

by the skin. For crossed stiffeners, the strains in Equation (28) are substituted in Equation (12) to

fred the forces Fl and F_. Using AS in Equation (19), this leads to

(30)

Again, forces for diagonal stiffeners follow directly from those for the crossed stiffeners.

It is now possible, given applied loads N, or Nx,, to calculate the portion of each load carried by the

skin and the stiffeners. The result of combined loads is handled by the principle of superposition;

deformations and loads are a linear combination of those quantities when applied independently.

3.1.2 Material Failure Analysis

A possible mode of failure, in addition to buckling-type failures, occurs when the strength of the

panel is exceeded. In the field of composite failure mechanics, many criteria have been proposed to

predict the onset of this failure mechanism. Some of the more well known of these include the

maximum stress criterion, maximum strain criterion, Tsai-Hill criterion, and Tsai-Wu tensor

polynomial criterion 2_. The maximum strain failure criterion, where first-ply failure is predicted

when any lamina strain component exceeds a prescribed allowable, is adopted for the present design
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study. Although this criterion is rather basic and prone to error under certain loading regimes, it

is simple to implement and provides direct information as to the failure mode, e.g. failure in trans-

verse tension, longitudinal compression, shear, and so on. In addition, the load distribution analysis

in Section 3.1.1 provides only approximate, average values for loads in the panel components.

However, the stress and strain distributions in a stiffened panel are very complex due to the abrupt

section changes where stiffeners are attached to the skin. In calculating the load distribution with

the smeared analysis, any interaction is ignored and it is assumed that the stress distribution in the

skin is constant over the planform area. Therefore, these approximations in the load distribution

analysis indicate that it would be inappropriate to implement a more sophisticated failure hypoth-

esis.

The maximum strain criterion is used to predict material failure on a lamina level. Therefore, the

laminate strains are transformed to strain components in the principal material directions for each

lamina under consideration. These strain components are then compared with the strain allowables.

Failure is predicted if one or more of the following inequalities is not satisfied

t t
81 < _'1, allowable

c c
81 < 81,allowable

t t
82 < g2, allowable

¢ ¢
82 < 82, allowable

lYI2 t < Yl2, aUowable

(31)

where

I ¢
_1, allowable(_l, aUowabte)= maximum allowable tensile (compressive) normal strain in 1 direction

¢
t (_2, allowable) = maximum allowable tensile (compressive) normal strain in 2 direction_'2, allowable

= maximum allowable shear strain in the 1-2 plane
12, allowable

Note that a provision is made for the fact that some materials have different strengths under tension

and compression. Also, the maximum allowable shear strain criterion is independent of the direc-

tion of the applied shear strain in the material coordinate system.
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The procedure for implementing the maximum strain criterion in the analysis of composite panels,

whether flat or stiffened, is quite straightforward. In Section 3.1.1 the equivalent panel stiffnesses

A_1, AI_, A2a, and A_ were determined. Of course, for the unstiffened plate, these reduce to

A_, ..., A_. These quantities can be inverted to calculate equivalent panel compliances. Then, given

the loads applied to the panel, the resultant panel strains can be calculated directly. For the skin

laminate, these global strains are transformed into principal material direction components for each

ply and the criteria in Equation (3 I) applied to test whether failure has occurred. For the stiffeners,

the global strains are transformed to calculate the normal strain component coincident with each

stiffener axis. Only the first two criteria in Equation (31) need be applied, as the stiffeners are as-

sumed to carry axial loads only. For the present study, the strain allowables for the stiffeners are

assumed to be the same as those for the skin laminae and numerical values are shown in Table 1

on page 23.

3.2 Stability Analysis of Stiffened Panels

Two buckling analyses are performed in the panel design code. These axe buckling of the panel

assembly and local crippling of the stiffeners. In Section 3.2.1, the theory and development are given

for the buckling of flat and stiffened simply-supported orthotropic plates under in-plane loads. The

stiffener crippling analysis was developed by a previous researcher. However, in Section 3.2.2, the

basis for the analysis is briefly reviewed for completeness.
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3.2.1 Formulation of Panel Buckling Analyses

One mode of failure for stiffened panels under in-plane loads is panel buckling, where both the skin

and stiffeners participate in out-of-plane deflections. Predicting the onset of panel buckling is im-

portant as it may lead to catastrophic failure of the panel.

In Section 3.2.1.1, the basic theory of applying energy methods and the Rayleigh-Ritz method to

general plate stability problems is reviewed. The use of Lagrange multipliers in the constrained

minimization of a general functional is also explained. The two concepts are then combined to

provide a method for solving plate buckling problems with unusual constraints, such as complex

boundary conditions or attached stiffeners. In Section 3.2.1.2, the Rayleigh-Ritz method is used

to solve for the buckling load of a simply-supported rectangular orthotropic plate under com-

pression and shear loads. This solution allows a flat plate capability to be included in the design

code and it also represents a step in the development for a stiffened panel. Finally, in Section

3.2.1.3, the method of Lagrange multipliers is used to calculate the buckling load for a simply

supported geodesically stiffened rectangular panel.

3.2.1.1 Theory of Energy Methods with Constraints

Methods based on energy principles are very important for the analysis of plate-type structures. In

conjunction with variational calculus, energy principles can be used to derive the basic governing

equations and natural boundary conditions for anisotropic plates aT. The practical importance of

energy methods is their use in obtaining approximate solutions to complex plate problems. The

Rayleigh-Ritz method, which is based on energy methods and is widely used for the bending,

buckling, and vibration of plates, will be reviewed. A second topic to be considered is the use of

Lagrange multipliers in plate problems. Lagrange multipliers represent a mathematical technique

of imposing constraints on any general functional. Energy methods define a single scalar functional,
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thetotalpotentialenergy,whichgovernstheentireplateproblem. Therefore, Lagrange multipliers

can be used to solve plate problems with unusual constraints such as complex boundary conditions

or, in the present study, attached stiffeners.

EnerL,v Methods: Energy methods are useful in those plate problems where a direct solution to

the differential equation of equilibrium is not possible. These methods are based on the law of

conservation of energy which requires that the work done by external forces on an elastic structure

be stored in the form of strain energy. This leads to defining the total potential energy H as the sum

of the strain energy in a plate and the potential energy of the loads on the plate. For a plate under

in-plane loads this takes the form

H(u°, v°, w) = U+ V (32)

where u °, v °, w are displacements in the x, y, z directions, U is the strain energy of the plate, and V

is the potential energy of the in-plane force resultants. The existence of a stable equilibrium con-

figuration is defined by the "principle of the stationary value of the total potential" and the "prin-

ciple of the minimum total potential. _ The first principle states that an elastic system is in

equilibrium only if the total potential has a stationary value

H(u °, v°, w) = stationary value (33)

The second principle states that only those kinematically admissible deformation fields which make

the total potential a minimum correspond to a stable equilibrium. The solution of this extremum

problem by an approximate method will now be considered.

Raylei_h-Ritz Method: The Rayleigh-Ritz method (sometimes called simply the Ritz method) is

very useful in fmding approximate solutions to boundary value problems. The method represents

plate displacements in the form of finite series
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M N

e Q

p--I q--1
R S

r=l s=l

(34)

where A.., B,q, C., axe undetermined coefficients and W., Upq, V,, axe known functions of the spatial

coordinates x and y. These functions are usually chosen in variables separable form X,(x) _@) and

must satisfy at least the geometric boundary conditions. In general, the Rayleigh-Ritz method gives

approximate solutions as the equilibrium equations are not completely satisfied, and critical values

will be higher than the true value, Although the choice of shape functions is somewhat arbitrary,

a judicious selection may only require a few terms for an adequate solution. If the functions form

a complete set and satisfy geometric boundary conditions, then in theory the exact solution will be

obtained in the limit. In practice however, this is difficult to achieve (particularly for anisotropic

plates) and convergence will be very slow. It has been proven, for example, that the deflection of

a simply supported anisotropic plate cannot be represented in vaxiables-sepaxable form n. Fortu-

nately, in many cases reasonable results can be obtained for plate deflections, critical loads, and

vibration frequencies using energy methods. On the other hand, quantities involving the derivatives

of the functions (moments, strains, stresses) may converge slowly, or not at all zT.

Introducing the assumed functions (34) into Equation (33) reduces the stability criterion to that of

finding the minimum of FI with respect to the undetermined coefficients

m= 1,2 ..... M
c31-I = 0

_3Arnn n = 1, 2 ..... N

p=l,2 ..... P
c3H =0

Oapq q = 1, 2 ..... Q

r=l,2 ..... R
OH = 0
OCrs s= 1,2 ..... S

(35)
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These expressions define (M*N + P*Q + R'S) simultaneous algebraic equations in the (M*N +

P*Q + R'S) undetermined coefficients A.., B,_, C,,. In the case of buckling, they constitute an

eigenvalue problem whose nontrivial solutions are found when the determinant of the coefficient

matrix vanishes. The use of this procedure will be demonstrated for the buckling of both fiat and

stiffened plates. For these problems, where only symmetrically laminated plates are considered, the

in-plane (u*, v°) and out-of-plane (w) problems uncouple. Therefore, the strain energy contribution

of the inplane deformations can be considered an arbitrary constant, and only the frrst expression

of Equations (34) and (35) need be considered 27.

Lal_range Multiplier Method: The procedure for applying the principle of Lagrange multipliers

(or undetermined multipliers) as it applies to the minimization of a general functional subject to

additional constraints on the function variables is shown below. Application of the Lagrange mul-

tiplier method to plate problems will then be discussed. A proof of the validity of the method can

be found in Budiansky and Hu 32,as well as many texts on optimization or the calculus of variations.

It is required to minimize a function fof I variables xl, x2 .... , xt

fix t , x2..... xt) (36)

subject to J independent constraint functions gj that require

gl(xl, x2, -.., xl) = 0

g2(xl , x 2..... xt) = 0

gs(xl , x2 ..... x,O = 0

(37)

A composite function L called the Lagrangian is now defined as

L(x, y) =fix) + y lgl(x) + y2g2(x) + ... + y jg.t(x)
J

= Ax) + _ _'jgf(x)
.l=l

(38)
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where x denotes the vector of variables xl, x2 ..... x t and 7 the vector of undetermined Lagrange

multipliers yl, y2 ..... vs. Note that one Lagrange multipfier yj is required for each constraint gj. The

necessary conditions for fix) to be a minimum while simultaneously satisfying the constraints 7 are

OL(x, 7)
=0 i=1,2 ..... t

Ox_ (39)
OL(x, 7)

=0 j= 1, 2,...,J
o_j

Substituting Equation (38) in Equation (39) and performing the differentiation results in

Of(x) s Ogj(x)

ox--7/+Z ox, =o i= 1,2.....I
j=l

gl(x) = 0 j = 1, 2 ..... J

(40)

which represent (I + J) simultaneous equations in the (I + J) unknowns x and 7. These equations

are then solved for the original variables x and, if desired, the Lagrange multipliers 7.

The method of Lagrange multipliers represents a powerful analysis tool, particularly for applications

where variational methods can be used to express the problem in the form of a functional similar

to fix). Clearly this is the case for energy method solutions to plate problems where the functional

is the total potential energy FI. The Lagrange multiplier method can be applied to plate stability

problems in several ways. For example, they can be used where it is difficult to land a deflection

function which can satisfy the boundary conditions directly 32333435. A1-Shareedah and Seireg 36have

even considered problems with mixed boundary conditions along each edge. A second application

of Lagrange multipliers is to impose additional constraints on problems where the deflection func-

tion already satisfies the boundary conditions. For example, AI-Shareedah and Seireg 37 imposed

zero-displacement conditions in the interior of a pressure-loaded plate to represent supporting col-

um_ns under a floor slab. This method has been used by the author to model the local buckling

of various shaped skin sections of heavily stiffened panels by setting w = 0 along lines where the
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stiffenerswouldbe located. In a third paper, AI-Shareedah and Seireg 3gaccurately predicted the

transverse deflection of a pressure-loaded rectangular isotropic plate with an oblique stiffener. They

used Lagrange multipliers to enforce transverse displacement continuity between the plate and

stiffener at a finite number of points. In the present work, their technique is adapted and extended

to the stability of orthotropic plates with multiple orthotropic oblique stiffeners under the action

of in-plane loads.

3.2.1.2 Buckling of Flat Orthotropic Plate

The methodology for applying the Rayleigh-Ritz method to stability problems was reviewed in the

previous section. The method will now be used to predict buckling of an orthotropic simply-

supported rectangular plate under in-plane compressive loads Nx, N., and shear N.. The governing

differential equation for a homogeneous anisotropic plate, or a symmetrically laminated composite

plate, is given by v

D1 lw,x.x_ + 4D16w,xxxy + 2(D12 + 2D66)W,xxyy + 4D26w,xyy.v + D22w,yyyy

+ A/xW,xx + 2Nxyw,xy + Nyw,yy = 0
(41)

where the comma notation denotes partial differentiation with respect to the subscripted variables

and the in-plane force resultants Nx and Ny are positive when compressive. The direction of positive

shear is also reversed from the standard convention. In the present analysis, it is assumed that the

plate is specially orthotropic and the bending-twisting coupling terms D_6 and D26 vanish. For most

laminates (other than cross-ply) the Dt_ and D2n terms are in fact nonzero. However, using lami-

nation sequences which do eliminate bending-twisting coupling simplifies analysis, maximizes sta-

bility loads, and minimizes distortion during manufacture 39. Data sheets published by ESDU 39

provide a definitive list of layups, containing up to 21 layers, with special orthotropy. These results

can be extended to laminates with more plies by combining groups of sublammates. Even in general

laminates, the coupling terms can be decreased by interspersing the angle plies through the thick-
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ness. In any event, assuming that DI_ and D26 are zero reduces the governing differential equation

to that for a specially orthotropic laminate

D1 lW,xxxx + 2(D12 + 2D66)w,x.xyy+ D22w,yyyy + Nxw,x.x + 2Nxyw,xy + Nyw,yy = 0 (42)

For a rectangular plate of width a in the x direction and height b in the y direction, the conditions

for simply-supported boundaries are 27

w_-0 }Mx=_(Dllw,xx+Dl2w,yy)= 0 at x=O,a

w=0 }My = - (Dl2W,xx q- D22w,yy) = 0 at y = 0, b

(43)

If an assumed displacement function of the form

M N

__ _f_ . mrtx nny O<x<a
w(x,y) = _....._z...._Am,_ sm -----if-- sin T 0 < y < b (44)

m=l n=l

is chosen, all boundary conditions in Equation (43) are exactly satisfied. It should be noted that

if the plate were under the action of pure compression (i.e. N_y= 0), the differential equation (42)

would contain only even derivatives in x and y. The function in Equation (44) would then exactly

satisfy both Equations (42) and (43) and the solution could be found directly via substitution in the

differential equation. Applying shear, however, introduces odd derivatives in the differential

equation so that an approximate solution method must be resorted to. In this example the

Rayleigh-Ritz method is used, but the Galerkin method would give an identical result.

Whitney r expresses strain energy in bending of a specially orthotropic plate as

b 2
U= 1 ff f0 [Dll(w'xx) + 2Dl2(W'xx)(W'YY)+ D22(W'yy)2+ 4D66(W'xy)2] dx dy

(45)

and the potential energy of external in-plane loads as
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1 a b 2

"0 "0
(46)

Having chosen a displacement function, explicit expressions for the energies can be written. The

required second order derivatives of w in Equation (44) are substituted into the strain energy ex-

pression (45) and the products of the series expanded. The order of summation and integration

operations are reversed and the trigonometric products evaluated using the identities

fo iTtx • jrtx [_0 i=jsin---f--sin--2-- dx =
i*j

cos--7- cos-7- ax =

(47)

Due to the orthogonal nature of the trigonometric series, only terms in which both the x and y

portions have pairs of identical indices, giving sin 2 or cos 2 expressions, remain nonzero. After inte-

gration, the strain energy expression simplifies to

M N [ mn ]2 n ]U= _raab8 E E A2mn DII(_ )4 + 2(DI 2 + 2D66)( --_'- ,/ + D22( _ )2 (48)
m,,_l n--.I

The corresponding expression for the potential energy V is found by substituting both first and

second order derivatives of w into Equation (46) and using the identities in Equation (47) plus

ffsin d__ cos j_rx--/- dx =

2/#
, (i +j') odd

7r(i2_j2) (49)

0, (i +.t') even

to arrive at
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{n12]v= mn _ +Ny-'_8
m=l _=1

M N M N

m=ln=lp=lq=l _m2 n2_q2-}

(50)

with the coefficient of N,y nonzero only when (m + p) and (n + q) are both odd. The energy ex-

pressions are now abbreviated as

M N

U= E Z..a_-_A2rnnPmn
m=l n=l

_"_ A 2 Rm"= --2 /', mn AmnApq SmnpqV

n=l m_l n=l p=l q=l

(51)

where the functions of the indices are

_ mn)2 D22(._ _-

Rmn -- Tr2ab[Nx(_-)2+Ny(n) 218"b

[Nx-y 4mnpq
Smnpq = (/92 _ m2)(n 2 _ q2) '

O,

(m + p) and (n + q) odd

otherwise

(52)

and a common multiplicative factor 2 has been extracted from the applied loads

m

U_ = aU_

Ny =aNy

Nxy=2Nxy

(53)

Adding U and V from Equations (51) gives the total potential energy H as a function of the unde-

termined coefficients An. The solution is determined by satisfying the conditions
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OH i= 1,2 ..... M
-0

OAtj j= 1,2 .... ,N
(54)

Carrying out the partial derivatives of Equation (54) on the total potential energy results in

f M N f N

V A _ mnljl
2AIjPI'I- "_ 2AijRiJ + Z Z Apq Sijpq + _ mn _ (=0

p=l q=l m=l n=l J

i=1,2 ..... M

j = 1, 2 ..... N (55)

Examining Equation (52) reveals that S"_0¢ = S petal, so the two summations in Equation (55) can

be combined. Eliminating the common factor of 2 and returning to the original indices rn and n

produces the final expression

AmnP ran- 2 Amn Rmn + ApqS mnpq = 0
p-'-I

re=l,2 ..... M

n=l,2 .... ,N (56)

where P_, R _', and S,,_o are as given by Equation (52). Equation (56) defines a set of (M'N) al-

gebraic equations in the (M'N) unknowns A_,. This constitutes a classical eigenvalue problem,

which may be expressed in matrix form as

[ [/CJ - 2[M] ]{A) = 0 (57)

For a nontrivial solution (i.e. AN _ 0), it is required that the determinant of the coefficient matrix

of (A) be zero. This will result in (M'N) eigenvalues 21 with (M'N) associated eigenvectors

{A}I. The smallest positive eigenvalue 2cR, when substituted in Equation (53), determines the crit-

ical loads for the plate. The eigenvector associated with the critical eigenvalue specifies the de-

formed shape of the buckled plate, although the actual displacements are indeterminate.
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3.2.1.3 Buckling of Orthotropic Plate with Oblique Stiffeners

As discussed in earlier sections, buckling analyses for stiffened panels (and particularly so for ob-

lique stiffening) may resort to smearing the stiffeners. For panels with only a few stiffeners, however,

this approach does not represent a good approximation. Energy methods which treat the stiffeners

as discrete elements were developed for isotropic panels with longitudinal or transverse stiffeners

at least forty years ago; e.g. Timoshenko and Gere as, Budiansky and Seide 4°, Seide and Stein "t.

The approach is to minimize the total energy of the stiffened panel, which includes strain energy

of the fiat plate, potential energy of the loads on the plate, the strain energy of each individual

stiffener, and the potential energy of the loads on each stiffener. Since longitudinal and transverse

stiffeners axe parallel to the plate coordinate system, it is easy to obtain expressions for the stiffener

deflections in terms of a single parameter, the skin deflection w. When the stiffeners are oriented

at some angle to the coordinate axes, however, the required expression for the skin deflection along

an arbitrary oblique line is rather complicated. The problem is exacerbated when products of the

derivatives of that expression axe required in the energy relations. Hofmeister and Felton 4__ solved

the buckling problem in this manner for a square isotropic plate with a single pair of oblique

stiffeners. Although viable for one specific geometry, they stated that this approach was too in-

volved for general stiffener orientations.

An alternate approach based on undetermined, or Lagrange, multipliers has been used by A1-

Shareedah and Seireg 3_for the transverse deflection of a pressure-loaded rectangular isotropic plate

with an oblique stiffener. Rather than expressing stiffener deflections in terms of complicated

functions of w, the deflection of a stiffener is expanded in a function defined in a local coordinate

system independent of that for the skin deflection. The strain energy of the stiffener and potential

energy of the stiffener loads are then easily found in terms of this simple function. Continuity of

out-of-plane deflection between the skin and the stiffener is imposed at a finite number of points

along the stiffener axis using Lagrange multipliers. The total energy of the system is then minimized

to determine the solution for the stiffened panel assembly while simultaneously satisfying all dis-
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placement constraints. In the present work, this technique has been adapted to the stability of

orthotropic plates with multiple orthotropic oblique stiffeners under the action of in-plane loads.

There are a number of assumptions and limitations inherent to the Lagrange multiplier method

approach:

1. Continuity of stiffener-skin displacements is imposed at a finite number of infinitesimal points;

the width or shape of the stiffener has no effect other than that on the second moment of in-

ertia of the stiffener cross-section.

2. It is assumed that each stiffener has zero in-plane flexural stiffness (i.e. for bending in a plane

parallel to the surface of the skin) and zero torsional stiffness.

3. Small deflection theory for bending of the plate and simple beam theory for bending of the

stiffeners are used.

4. The load distribution between the skin and stiffeners must be known in advance.

Expressions for the strain energy and potential energy of external loads for a rectangular orthotropic

plate have already been derived and summarized in Equations (51) and (52). Therefore, only energy

expressions for the deformation of the specially orthotropic stiffeners are required. In computing

the energy expressions for the stiffeners, it is assumed that each stiffener behaves as an orthotropic

beam allowed to deform only in out-of-plane bending. Specially orthotropic beams, where all

onhotropic plies are oriented parallel to the axis of the beam (cross-ply beams are also specially

orthotropic, but are not considered in the present study), can be analyzed by classical isotropic

beam theory if the isotropic modulus of elasticity E is replaced by Et, which is the longitudinal

modulus of the plies in a direction parallel to the fibers 27. The strain energy in bending of an

orthotropic beam is then given by as

us= 2 (_,,m) dr (58)
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where the S subscript indicates this component of the energy is for a stiffener, _ is the transverse

deflection of the stiffener, and _ is the coordinate axis oriented along the stiffener of length L. The

total moment of inertia I, for the two stiffener sections (one above and one below the skin) with

respect to an axis coincident with the midplane of the skin is calculated via the parallel axis theorem.

The potential energy of external forces on a beam is not dependent on material properties, so the

expression will be same as that for an isotropic beam z_

Vs=-F fLo(_,_)2 d_

where F is the total axial load on the stiffener.

(59)

In Section 3.2.1.2, simply-supported boundary conditions were assumed for the rectangular plate.

Consistent with this assumption, the boundary conditions for a beam with simply-supported ends

are

}M = Eels_,,7,7 = 0 at _ = 0, L (60)

Expanding the stiffener deflection in a single sine series

K

E sin kn_ 0 < 1,1< L (61)_(n) = Bk L
k--I

satisfies the zero deflection and moment conditions at both ends. To calculate the strain energy for

each beam, the second derivative of Equation (61) is taken with respect to _ and the result substi-

tuted in Equation (58). As was the case for the plate energy expressions, squaring the series and

integrating using Equation (47) eliminates all terms except those with sin 2. The strain energy in

bending of the beam is then
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K

us -
4L 3 /_..a _k

k,=l

(62)

The expression for the potential energy of the axial load F on the beam is found by taking the first

derivative of Equation (61) with respect to 7, substituting in Equation (59) and integrating over the

length of the beam

K

n2F _-_k202
Vs = - 4"--_/-..a _'k (63)

k=l

The energy expressions can be abbreviated for convenience. For completeness, the relations for a

fiat plate (the skin of the panel), now denoted by a subscript P, axe repeated from Equations (51)

and (52)

M N

Ut'-- Z /..a_'_AimnPmn
m-_ l nffi l

I I K

l--1 l--1 k=l

_-_A 2 RmnVp = - 2 + AmnApqS ranpq

n=l m=l n=l p=l q----I

! I K

Vs= =- 2 ,v:
iffil iffil k=l

(64)

where the functions of the indices are defined as
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po. (mn , /")']_ -_- + 2(D12 + 2D66) _ + D22 -_"
8

Qk _ ,: Ed, I?
4L 3

8

I _ 4mnpq , (m + p) and (n + q) odd
smnp q = (t92 _ mE)(ri2 _ q2)

0, otherwise

7_k_ _2kZ
4L _

and a common multiplicative factor 2 has been extracted from the loads

= = = F,= (65)

Note that the energy expressions for the stiffeners in Equation (64) are the sum of contributions

from I number of stiffeners. It has been assumed that all stiffeners have the same Ee, I,, and L.

The total energy of the stiffened panel is given by

H = Ut,+ Us+ vv+ Vs (66)

where the transverse displacement of the skin and each stiffener were expanded in independent

trigonometric series. However, the skin and stiffeners are, of course, physically bonded together.

The compatibility of displacements is imposed at a finite number of points along each stiffener

(Figure 12). In terms of the displacements this condition is expressed as

M N K

g'J Z 2Am n . tort . mr _LBlksin kn= sm --'d- xq sm --ff-Yo T )_tj= o
ra----I n----I k--1

i=1,2 ..... I

j = 1, 2 ..... J (67)

where the index i denotes a particular stiffener and the index j a constraint point on that stiffener.

It has been assumed that each stiffener has the same number J of constraint points. In order to fred
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the critical load of the stiffened panel, the total energy is minimized subject to the constraints on

displacement compatibility. This is accomplished by the use of Lagrange multipliers, where one

multiplier is required for each constraint, in this case each location on the skin (xv, Y0) and the co-

inciding point v/0 on the stiffener where the displacements are to match. The ([*J) constraints are

imposed on the total energy of the panel with the multipliers #u creating the functional

I J

+
i=I j=i

(68)

Substituting Equations (64) and (67) into Equation (68) gives the complete expression for @ in

terms of the unknown constants A,.., B,k, and _0. The conditions for a minimum of @ are

O0 m= 1,2 ..... M
-0

bAron n = 1, 2 ..... N

_O i= 1,2 ..... I
-0

OBtk k = 1, 2 ..... K

O@ i= 1,2 .... ,I
=0

0_j j = 1, 2 ..... J

(69)

which result in the following set of equations

I J

b=l j==l

-- ,_ 2AmnR mn+ = 0

p=l =

=o
t

M N K

ran . mr - E Btk sinE EAmnsinTxosm--[_-YU __ -_-_IU 0

m=l n==l k==l

m=l,2 .... ,M

n=l,2 ..... N

i=1,2 ..... I

k=l,2 ..... K

i=1,2 ..... 1

j=l,2 ..... J

(7O)
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Equations (70) represent (M*N + I*K + l'J) equations in the (M*N + I*K + l'J) unknowns

A,,,, B,,, and _,j. They constitute a classical eigenvalue problem where the lowest positive eigenvalue

2cR determines the critical load of the skin and stiffener assembly.

The set of unknowns, including A,_,, Bj,, and #,j, tends to grow rather rapidly as the number of

stiffeners, number of constraint points, or the number of terms in the skin or stiffener deflection

functions is increased. This is of concern as the eigenvalue solver uses an iterative solution process

which becomes computationally expensive as the order of the coefficient matrices increases. As

such, it is advantageous to reduce the size of the problem, or condense the coefficient matrices, by

eliminating some of the unknowns prior to calling the eigenvalue solver.

The set of equations (70) can be written in matrix form

[Ktl ] [0] [Ki3]

[0] [K22] [K23]

[K3_] [K3:] ro]

{A}

{.}]

[Mr 1]

: _ [0]

[0]

E01[,A,1
[o] [o]]

(71)

It is observed that the coefficient matrices are, in fact, rather sparse. The first step in the

condensation process will be to eliminate {#}. Note that (#} is absent from the third row, so at-

tention need only be paid to the first two. To isolate {#} from one of these equations, it is necessary

to invert either [Ku] or [K_]. Of course, in order to invert a matrix it must be square in dimension.

However, [K13] has dimensions (M'N) by (J'K) while [K23] is (J'K) by (J*l). Requiring that

(M'N) equal (J'K) is not practical as, for example, a panel with only a few stiffeners (small J)

would have to have an excessive number of terms in the stiffener function (large K) or only a few

terms in the skin function. Alternatively, having (J'K) = (J*l), meaning K = I, is not too restric-

tive. That is, as the number of constraint points per stiffener is increased, the number of terms in

the stiffener deflection function must increase correspondingly, but the the number of terms in the

skin deflection function remains independent. Therefore, it is more practical to set K = I and invert

[K23]. Multiplying out the second row of Equation (71) and rearranging to isolate {#}
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Figure 12. Lagrange Multiplier Model of Plate and Oblique Stiffener
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{.} = [K23]-tE,_EMn]{B}- [Kn]{B}] (72)

This expression can simply be substituted into the first row of Equation (71) to eliminate {#}.

Proceeding with this, and then rearranging to isolate nonload terms on the left hand side and the

load terms (those with a 2 coefficient) on the right gives

[K 11]{A } _ [Kt3 ] [K23]-t [Kn]{B} = 2[Mr t](A } _ 2[K13] [K23] -1 [Mn]{B } (73)

The above equation can be rewritten by labelling the matrix products as new submatrices. Along

with the third row of Equation (71), the condensed set of equations becomes

1[&t] [_:3=2 L(B}] L [o] [o1 L(B}j

(74)

with

[K,2] = - [Ku] [//23]-I[Kn]

[Mr2 ] = - [Ku] [K23]-'[M n]

(75)

The second step of the condensation process eliminates either {A } or {B}, leaving the solution only

in terms of the other. In order to eliminate {A} it is necessary to invert [K31], which is undesirable

for previously mentioned reasons. On the other hand, removing {B} involves the inversion of

[//3=]. This matrix is already square due to assumptions made in the first condensation step, so no

further restrictions are necessary for this route. Choosing the latter by eliminating {B}, the second

row of Equation (74) is multiplied out and rearranged to isolate {B}

{B}= - [&2]-l[&t]{A} (76)

The above is substituted for {B) in the t'n'st row of Equation (74) to yield

[[Kit] _ [KI2 ] [Kn]-l[K31]]{A} = ,l [[Mlt] - [M12] [Kn]-t[K3t]]{ A} (77)
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Substituting for [Kla] and [M12] from Equation (75), the final condensed solution can be written

in terms of the original submatrix components as

[K*]{A} = ,,t [M*]{A} (78)

with

[K'] = [_'L_]+ [K_32[K23]-_EK2=][K32]-aEX3_]

[M*] = [M1l] + [K13][K23]-I[M22] [K32]-l[K31]
(79)

The order of the matrices to be solved has been reduced from (M*N + I*K + l'J) to just

(M'N), which considerably reduces the computational time required by the eigenvalue solver. This

has been accomplished through a small number of matrix operations whose computational time is,

in general, more than offset by the saving in solver time. For example, a typical test problem was

run for a cross-stiffened panel with 5 cells. The skin deflection function had 15 terms in the X di-

rection and 9 in the Y direction. Each of the 10 stiffeners had 7 constraint points and consequently

7 terms in its deflection series. Therefore, the parameters governing the problem were

M= 15, N= 9, I= 10, J= 7, and K= 7. Performing the first stage of condensation, removing {#)

to obtain Equation (74), reduces the coefficient matrix order from 275 to 205. Despite using

computer time for condensation matrix operations, the total solution time is cut to 50% of that

required to solve the full matrix in Equation (71). Performing the second condensation step, re-

moving {B} to yield Equation (78), reduces the matrix order to 135 and the computer time to just

21% of the original.

3.2.2 Summary of Stiffener Buckling Analysis

In Section 3.2.1.3, the overall or generalized buckling of a geodesicaUy stiffened panel was treated.

A second possible mode of instability for stiffened panels is local buckling or crippling of the

stiffeners. In this mode, the free edge of the blade stiffener is assumed to deflect parallel to the plane
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of the panel between the boundaries (see Figure 7 on page 18). The restraint conditions on the

three supported edges represent some unknown degree of elastic restraint, but for simplicity classical

boundary conditions are assumed. The skin is generally quite thin, so it primarily provides restraint

against translation of the adjacent stiffener edge, but little resistance to edge rotation. Also, it is

anticipated that for a fully constrained optimum panel design, stiffener and skin buckling will often

occur simultaneously, allowing the edge of each component to rotate with little mutual resistance.

The loaded ends of the stiffener typically form a junction with other stiffeners or the supporting

structure at the edges of the panel. Experimental tests on isogrid stiffened aluminum shells indicated

that the degree of restraint at the ends of the stiffeners was close to the clamped condition ==• On

the other hand, many studies in the literature have assumed simply supported ends. Since the simple

support assumption results in a conservative design, this condition is adopted for the present work.

Therefore, each blade stiffener is modelled as a rectangular plate with simply supported and free

unloaded edges and simply supported loaded ends under uniform axial compression (Figure 13).

It is assumed that the stiffener buckles in a single half-wave between the loaded ends. The end load

is calculated using the results of the in-plane static analysis described in Section 3.1.1.

Geodesically stiffened composite panels are often constructed using a filament-winding technique,

as discussed in Section 1.0. The primary advantage of this method is reduced fabrication cost

through automation. CoincidentaUy, it also produces excellent stiffness and strength properties in

the primary loading direction of each stiffener by orienting the fibers along the stiffener axis.

However, the transverse shear stiffness of this arrangement is governed primarily by the rigidity of

the matrix material, which is low for typical high performance composites. In addition, stiffeners

are often quite thick with respect to their height and length. It is well known that for plates with

low ratios of interlaminar shear to in-plane extensional moduli and low ratios of planform to

thickness dimensions (less than about 10), significant error can be incurred by using classical thin

plate theory2L Experimental tests by Rehfield, et al 4 s on fdament-wound isogrid panels have

confirmed that transverse shear effects are significant. Therefore, a first order shear deformation

theory [FSDT] of plates, in which shear deformation is assumed to vary linearly through the
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thickness of the plate, is used to formulate the equations governing the stiffener stability problem.

Although this formulation is more involved than that for thin plate theory, unidirectional fiber

orientation results in specially orthotropic material properties, simplifying the equations consider-

ably. In the following discussion, FSDT is introduced and the Rayleigh-Ritz solution for the

buckling of a stiffener with shnply supported ends is summarized. The complete derivation for both

simply supported and clamped ends is given by Stoll n.

In FSDT, or Mindlin-type plate theory, the deformation due to transverse shear is assumed to be

linear through the thickness of the plate. The general displacement field takes the form

u(x,.v,z) = u°(xo,) + zC,x(x,.v)

v(x,y,z) = v°(x,y) + zCy(x,y)

w(xce,z) = w(x,y)

(8O)

where u, v, and w are displacements in the x, y, and z directions, respectively. Midplane displace-

ments in the x and y directions are u ° and v °, while the customary assumption of negligible trans-

verse normal strain _, implies that w is independent of z. The quantities fix and _b_ represent

rotations about the y and x axes, respectively, of a line initially perpendicular to the midplane sur-

face. In FSDT, the plate deformation is expressed as a function of five independent variables

u °, v°, w, ft,, if,. In contrast to classical plate theory (which has only three independent variables

u °, v*, w), FSDT allows the rotations of the midplane normal line to vary independently of the

midplane surface deformation. The two extra degrees of freedom mean that plate response predicted

by FSDT will always be "softer", and buckling loads lower, than that predicted by classical theory.

Using strain-displacement and stress-strain relations in conjunction with the usual definition of

force and moment resultants leads to the constitutive relations (in abbreviated form)

(81)
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where{N) and {M} are force and moment resultants and the midplane strains and curvatures are

defined as

du ° ag, x
o Ox

X _X KX °

o oo,} {.yo}{:o ,o,
yxy° Ou° _° ° O_x O_y

Oy + Ox rxY +
Oy Ox

} (82)

Note that the relations in Equations (81) and (82) are identical to those for classical lamination

theory, except that the curvatures K are defined in terms of _ and _b_ instead of w. In fact, if the

rotations were assumed to take the form

0w 0w (83)g'x = Ox _Y = ay

the governing equations would reduce to those of classical plate theory with only three independent

variables. Constitutive relations governing the transverse shear behavior are also required and take

the form

Qx Aas A55 (Yxz)
(84)

where

t yzl
--b + Ow_

lYxzJ _. x Ox "

(85)

and

i, j=4,5 (86)
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in which k 2 is known as the shear correction factor and T is the total thickness of the plate. Note

that if Equation (83) were substituted in Equation (85), the transverse shear strains go to zero, as

expected. For homogeneous, specially orthotropic material Equation (86) reduces to

A,_ = G23T, A55 = GI3T, A45 = 0 (87)

FSDT specifies a shear strain which is constant through the plate thickness, but to account for the

fact that the transverse shear strains are not constant in each ply of a laminate, a shear correction

factor is used ¢. Several approaches have been used in the literature to determine the shear cor-

rection factor. The value of k s = 5/6, derived by considering the transverse shear stress distributions

in a homogeneous orthotropic plate under static bending loads, is used in this study 2_ '_. This value

has been shown to give acceptable accuracy for initial buckLing of moderately thick multilayerexi

plates '_.

The governing equations and natural boundary conditions for the stability of the shear deformable

plate are derived using the calculus of variations in conjunction with the principle of minimum total

potential energy. Only the basic steps of the solution are outlined here; for the complete procedure

see StolllS. Restricting the problem to specially orthotropic material eliminates the bending-

extensional coupling terms (B_j = 0), allowing the out-of-plane problem to be solved independently

of the in-plane problem. The Rayleigh-Ritz procedure, described in Section 3.2.1.1, is introduced

by assuming approximate solutions for the variables w, _, and _by in the form

N. N,. u,,

i= I i= 1 if 1

(88)

where ¢b,(x_v), O_(x_v), and O_,(x_y) are shape functions which satisfy the geometric boundary condi-

tions and are part of a complete set while A_, B_, and C_ are unknown constant coefficients. The

variational procedure results in the system of algebraic equations
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N. N,_ N,, N.
E_,_+E_+ E_ =_E_,_ ,=l,_....._
j=t j=] j=l j=1

N. N_, N,,

,/=I j=l ./=I

N,, N,_, ,V,,

j=l j=l jfl

(89)

where the K,p (_, # = 1,2,3) and M, are functions involving the area integral over the plate domain

of various combinations of w, _b,, _by, and their first derivatives with respect to x and y. The set

of Equations (89) can be written in symbolic form

r,A,] "[M11]

= ,_ [o]

[o2

[0] [o]l [{A}]

I
EO][o]j L(C}j

(90)

where it should be noted that the coefficient matrices are symmetric (e.g. [/<2,] = [K_2], etc). To

reduce the size of the eigenvalue problem, it is possible to condense the system of equations. Due

to the zeros on the fight hand side of the second and third rows of Equation (90), it is possible to

solve for both {B} and {C"} in terms of {A). When substituted in the first row of Equation (90), the

system of equations is a function of {A} only

[K]{A} = 2[M 11]{A} (91)

where [K] is a function of the submatrices [K.p] (a, fl = 1,2,3) and [M.] is as before. The order

of the coefficient matrices has now been reduced from (N. + N,. + N,,) to just (N.).

The eigenvalue problem represented by Equations (90) or (91) is valid as posed for a rectangular

plate under unlaxial load with any combination of simply supported, clamped, or free edges. The

desired configuration is imposed by the choice of appropriate shape functions to represent the plate
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deformations. The functions _b,(Xd0, O[(x,y), and O:[(xy) are chosen in x and y variables separable

form. Rewriting Equation (88) in this fashion gives

N."N.'

m=l n----I

N •ex N_x

p:l q:l

N_y N y

r:l s:l

x 2
Opq(X,y) = g (X)gq (y) (92)

=_(x)g_(y)_r_(x_v) 3

For a plate with three simply supported edges and one free edge at y : H (see Figure 13), the ge-

ometric boundary conditions (for the supported edges) are
i

w(O,y) : w(L,y) = w(x,O) : 0

e/._(x,O)= 0

_by(Oty) = _,y(LtY) : 0

(93)

which must be satisfied by the shape functions of Equation (92). The natural boundary conditions

for the plate are

Mx(O_v ) = Mx(Ly ) = 0

my(_,0) = m/_,_0 = 0

Mxy(x,H ) = 0

Qj,(x,t-I)= o

(94)

Assuming a single half-wave buckling mode shape in the x direction, the one dimensional shape

functions used for this case are

'_ g_v)---y"ckmn(XdO: jam(X) f Sin(2m-1)"-E- ,

,,x g_(y)= y(,-o_s(xdO: _(x) = sin(2r-1)--E ,

(95)
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All boundary conditions, both geometric and natural, on the supported edges are satisfied by

Equations (95). However, none of the boundary conditions on the free edge, which are all natural,

is exactly satisfied. In order to solve the stability problem numerically, the functions for qb_,_,0_¢,

and 0,', in Equation (95) are substituted in the integral equations for EK,_] (a, p -- 1,2,3) and I-M,_I

(not shown here). After evaluating double integrals the system of Equations (90) or (91) is in a form

which can be solved on the computer for the approximate critical load of the stiffener. The accu-

racy of the solution, of course, improves as more terms are taken in the shape function series.

3.3 Formulation of Anisotropic Rhombic Plate Buckling

This section considers the stability of anisotropic rhombic plates under in-plane loads. As discussed

in Section 2.2, Analysis and Design Tools, the original intent in developing this solution was to use

it as a local buckling criterion for the skin of a geodetically stiffened panel. This approach models

the portion of the skin between the stiffeners as a discrete polygonal plate under in-plane loads. For

design purposes the simple support boundary condition is usually chosen so that buckling load es-

timates will be conservative. The foregoing idealizations ignore continuity of the buckling mode

shape between adjacent elements of the panel and do not account for rotational restraint between

the stiffeners and the skin. The matter of inter-element continuity was resolved when the Lagrange

multiplier method [LMMi analysis (see Section 3.2.1.3) was implemented for predicting buckling

of stiffened panels, as it models the skin of the stiffened panel as a continuous sheet. Since the

LMM analysis is capable of modelling inter-stiffener skin buckling, the local buckling analysis using

rhombic plates appears to be somewhat redundant. However, in its present form the LMM analysis

can only handle specially orthotropic skin laminates, thereby ignoring the effects of bending-twisting

coupling terms Dl_ and D_. It is well known that the presence of these terms can account for a

considerable drop in buckling load and sensitivity to the direction of applied shear loads _° 2_

Therefore, the rhombic plate stability analysis has been retained to provide an estimate of the effect
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of neglecting bending-twisting coupling in the geodesic panel designs. The following discussion re-

views the range of solution methods for rhombic plate buckling available in the literature. The

process of transforming the problem to an oblique coordinate system and formulating the stability

criterion is then covered in detail.

Analysis techniques for the buckling of rectangular plates are well documented in the literature, but

less well so for skew or rhombic plates. In the past, some attention has been paid to parallelogram,

or skew, plates as this shape arises for the skin panels of rib and stringer stiffened swept wings.

However, the majority of these references consider only isotropic plates with clamped edges. For

simply supported skew plates, the nortrectangular geometry makes it very difficult to satisfy the

natural boundary conditions, even for isotropic materials. Only three relevant references have been

found which consider simply supported orthotropic skew plates; that by Durvasula 4_, who uses the

Rayleigh-Ritz method, and two by Kennedy and Prabhakara _ ,9, who employ the Galerkin

method.

Upon examining coordinate transformation and solution techniques for solving skew plate prob-

lems, it becomes apparent that solution methods for rectangular plates can also be applied to skew

plate problems. The differential equation of equilibrium and boundary conditions, expressed in

terms of the transverse displacement and elastic properties of a plate, fully define the buckling

problem for symmetric laminates in classical thin plate theory. For skew plates, these equations

are generally transformed from Cartesian coordinates to an oblique coordinate system. It will be

shown that the differential equation and boundary conditions for a rectangular, simply supported,

anisotropic plate have the same functional form in Cartesian coordinates as the corresponding

equations for a skew plate in skew coordinates. As a result, any methods which have been devel-

oped for rectangular anisotropic plates can be adapted for use with skew plates. Unfortunately, the

same problems which make the skew plate problem difficult to solve also occur for rectangular

anisotropic plates. Most solutions for rectangular anisotropic plates still employ approximate en-

ergy methods in conjunction with beam mode functions or trigonometric series. However, one al-

ternate technique, used by Whitney s° s_ sa s3 s4 for the buckling and vibration of both simply
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supported and clamped rectangular anisotropic plates, has been identified. In summary, three sol-

ution methods are discussed for use on the skew plate problem: the standard Rayleigh-Ritz solution

such as that used by Durvasula, a Fourier series solution by Whitney, and a Galerkin solution due

to Kennedy and Prabhakara.

The difficulty in solving simply supported skew plate and anisotropic rectangular plate problems is

in finding a displacement function which will satisfy both the geometric (zero displacement) and

natural (zero bending moment) boundary conditions. As such, approximate energy methods such

as the Rayleigh-Ritz or Galerkin methods, in which the natural boundary conditions are not satis-

fied, are often used. This is the approach (Rayleigh-Ritz method) used by Durvasula4L However,

it is well known from anisotropic rectangular plate studies that these methods always yield non-

conservative (over-estimated) critical loads and are slow to converge when the natural boundary

conditions are not satisfied ;7 ss. It is the bending-twisting coupling terms D_6 and D_s which cause

the natural boundary conditions to remain unsatisfied for rectangular anisotropic plates. For skew

plates, it will be demonstrated that similar coupling between bending and twisting curvatures exists

which is a function of both the plate skewness and the plate material anisotropy. For example,

increasing the anisotropy of a rectangular plate has been found to slow convergence of the

solution sS. Similarly, Troitsky s6 has noted that increasing the skewness of a plate hinders the con-

vergence of the skew solution. In view of this, it is unclear to what degree material anisotropy and

plate geometry might affect the results predicted by a standard energy method. As a result, the ob-

jective has been to develop an analysis approach which yields conservative results, in order to assess

the effects of laminate anisotropy and plate skewness on the critical load of a simply supported

anisotropic rhombic plate.

An alternative approach used by Whitney 50s_s2 s3s4 appears to give quickly convergent, conservative

results. Whitney assumes a general trigonometric series deflection function which satisfies neither

geometric nor natural boundary conditions. Each higher-order derivative is formally expanded in

a new Fourier series. The Fourier coefficients for this series are evaluated using their definition of

a double integral over the domain of the problem. A partial integration reduces the area integral
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to boundary integrals along the edges of the plate. The value of these boundary integrals accounts

for the degree of satisfaction of the boundary conditions of the plate. This technique was originally

suggested by Green s7 ss. These derivatives are then substituted into the governing differential

equation and coefficients of like form equated. Constraints are then imposed on the unknown co-

efficients such that all boundary conditions are satisfied. Truncating the Fourier series results in a

finite set of algebraic equations which can be solved for the critical load. This should represent a

near exact solution in the sense that both the equilibrium equation and boundary conditions are

satisfied, and the only approximation is the truncation of the series. Whitney observed that the

method was rapidly convergent and appeared to be conservative (converged from below the true

solution). Although this method could be applied to the skew plate problem, the formulation is

extremely complex and involves a large number of algebraic equations and unknown constants.

A modification of Whitncy's approach has been used by Kennedy and Prabhakara _ 49 for

orthotropic skew plates. In their method a simpler deflection function, satisfying the geometric

boundary conditions, is chosen. This allows the Galcrkin method to be used for the final solution

rather than direct solution by algebraic manipulation of the equilibrium equation. Higher-order

derivatives of the deflection function are found using Green's method. Although the use of an ap-

proximate solution method produces a problem which is slower to converge, the solution procedure

is considerably simplified and the predicted critical loads still appear to be conservative. As a result,

Kennedy's method was selected and adapted to anisotropic rhombic plates for the present work.

A detailed explanation of the skew coordinate transformation employed, the use of Green's method

in formulating derivatives, and Kennedy's method for the solution of the problem follow.

Coordinate Transformation

For the analysis of a skew plate it is advantageous to transform the governing differential equation

and boundary conditions into coordinates more suited to the plate geometry. The usual procedure

for transforming from rectangular (x_v) to skew (u,v) coordinates, which are parallel to the edges

of the skew plate, is accomplished by rotating the v axis an angle _b from the y axis (Figure 14-A).
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The loads can also be expressed in terms of oblique components, but are usually left as an

orthogonal system as they retain their true physical significance in this form 47. The conventional

skew transformation poses a problem for the present appfication because the direction of

compressive load application is always parallel with the the major axis or bisector of each rhombus

in the panel. In view of this, an alternate coordinate transformation is introduced where the

skewing of the plate is specified by a pair of equal half angles _ (Figure 14-B). Under this trans-

formation the bisector of the rhombus always remains aligned with the material and external load

reference axes. Henceforth, all references to skew coordinates will refer to this new system.

In order to transform the governing differential equation and boundary conditions for the plate

from Cartesian (x_v) to skew (u,v) coordinates, it is ftrst necessary to derive the equivalent differ-

ential operators. Basic trigonometry gives the following transformation equations

x = (u + v) cos

y = (v - u) sin q5 (96)

or, conversely

1
u = T (x sec ¢ -y csc ¢)

1
v = T (x sec ¢ + y csc ¢)

(97)

It is apparent that x = x(u,v) and y = y(u,v) are functions of both u and v, so that differentiation

with respect to these variables is governed by the chain rule

0 0 Ou c3 by
- +

Ox Ou Ox Ov Ox

0 0 Ou 0 Ov

oy - o---Y-g7+ o--;
(98)

The partial derivatives of u and v with respect to x and y are performed on Equation (97), giving
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(B)

Figure 14. Coordinate Transformations and Loading Geometry for Skew and Rhombic Plates: A)
Skew Coordinate System B) Rhombic Coordinate System
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Ou 1
O....._u= 1 sec _ =--Ox 2 Oy 2 csc_b

c_v _ 1 secqb Ov _ 1 csc_b
Ox 2 3y 2

(99)

Substituting Equation (99) in Equation (98) gives the relationship between differential operators in

the two coordinate systems

ox - 2

0 1 (0 O) (100)Oy - 2 cscqb 0v Ou

Higher order derivatives are obtained by repeated applications of Equation (I00). These relations

can now be used to transform the differential equation and boundary conditions for a rhombic plate

into the skew coordinate system. The governing differential equation for a homogeneous

anisotropic plate, or a symmetrically laminated composite plate, expressed in orthogonal coordi-

nates, was introduced in Section 3.2.1.2 as

DllW,x.r.xx + 4Dt6w,xxxy + 2(DI2 + 2D66)W,xxyy + 4D26w,xyyy + D22w,yyyy

+ N,,w,..,,+ 2Nxyw,xy+ N:,. = 0
(lOl)

where the comma notation again denotes partial differentiation with respect to the subscripted

variables and the in-plane force resultants N, and Ny are positive when compressive. The direction

of positive shear is also reversed from the standard convention. Abbreviating secqb and cscq_ as s

and c, respectively, Equation (100) gives the derivatives of w in terms of the skew coordinates

(u,v) as
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4
(W,uuuu + 4W,uuuv + 6W,uuw + 4w,uwv + w,vvw)

w'zxxx = 16

s3c (W,uuuu + 2W,uuuv - 2W,uvvv - w,vvvv )

52C2
W'xxyy - 16 (W'uuuu - 2W'uuvv + w,_)

$C3 ,
W,_yy = - --_ t,W,uuuu- 2w,uuuv + 2W,uv_ - w,vvw)

4
c (W,uuuu _ 4W,uuu v + 6W,uuw _ 4W,uv_ + w,vvvv )

W,yyyy _- 1---'6

s 2
w,_ = 7 (w,,.. + 2w,_ + w,_)

sc (w,vv- w,,,_)
W,xy ----

C2
W,yy = _ (W,uu -- 2W,uv + W,w)

(1o2)

Substituting Equations (102) in Equation (101), dividing through by Dz;, and designating the coef-

ficients of w ..... through w ..... as kt, ...,/q results in

klW,uuuu + 4k2w,uuuv + 2k3w,uuvv + 4k4w,uvvv + k5w,vn, v

+ l---L-- [(s2Nx - 2zcNxy + c2Ny)W,uu + 2(s2Nx - c2Ny)w,uv
D22

+ (,2N_+ _cg_y + c2y_)w,.] = 0

(103)

with

1

k 1 - 4D22

1

k 2 - 4D22

_ _ [s4Dll -- 4s3cDl6 + 2s2c2(Dl2 + 2/)66) - 4sc3D26 + c4D22]

_ _ [s4Dll - 2s3cD16+ 2sc3D26- c4D22]

1 [3s4D11 _ 2s2c2(D12 + 2/)66 ) + 3caD22] (104)
k 3 - 4D22

_ _ [s'_D11 + 2s3cD16 - 2zc3D26 - c4D22]

[s'$D11 + 4s3 cD16 + 2s2c2(D12 + 2D66) + 4sc3D26 + caD22]

1

k 4 -- 4D22

1

k 5 - 4D22

As a large number of integrations are required in the solution process, it is expedient to introduce

nondimensional coordinates
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u

V

r/-- a

(105)

where the boundaries of the rhombus are now given by _ = 0,1 and g = 0,1. This leads to

0 1 0
m

Ou a o_
O 1 0

Ov a Og

(1o6)

Introducing Equation (106) into Equation (103) gives the differential equation in terms of nondi-

mensional coordinates _ and

1
"--d-[klw'¢_¢ + 4k2w'_¢,7 + 2k3w'¢_nn + 4kaw'¢nn,1 + ksw'nnnn]
a

+ _ [(?G - z_cu_ + duy)w,¢_+ 2(_2N_- dUy)w,_,
a2D22

+ (s2Nx + 2scNxy + c2Ny)w,_,] = 0

(107)

Multiplying through by # and letting

2_x_ a2Nx
D22

a2 Nxy

2Nxy - D22

a2Ny

2Ny- D2 2

(108)

allows a common scaling factor 2 to be extracted from all applied loads. Note that normalizing with

respect to a2 means that the critical load parameter 2N will be independent of the size of the plate.

Similarly, normalizing with respect to Du removes any dependence on plate thickness. Substituting

the load parameters (108) in Equation (107) gives
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klw,¢_¢¢ + 4k2w,¢¢¢, 7 + 2k3w,¢_r1_ + 4kaw,_nnn + ksw,nm m

+(: _x+2_:_ +c2_,)w,.J=o
(109)

For brevity, the coefficients of the skew curvatures are grouped into single variables. The final form

of the nondimensional governing differential equation is

klw,¢¢_ + 4k2w,_¢_, 7+ 2k3w,_, m + 4kaw,¢n, m + ksw,mm n

+ 2{N'_w,_ + 2N-'_nw,¢n + Nnw,nn} =0
(11o)

where

N-_=s2Nx+c2Ny-2scNxy
N-_.t=s2Nx- c2Ny
N--,: : _ +: _,+_:_,

(lid

It is clear that Equation (110), governing the out-of-plane behavior of a rhombic plate in the skew

coordinate system, has the same functional form as the differential equation (101) for a fully

anisotropic plate expressed in Cartesian coordinates. It is significant to note that even for isotropic

materials, i.e.

Dll = D22 -- 2(D12 + 2D66 ) -- D

D_6 = D26 -- 0

k_ through ks are in general nonzero, so that there is no reduction in the number of terms in the

differential equation. For rectangular plates in Cartesian coordinates, considerable simplification of

the differential equation occurs for orthotropic and, to a greater degree, isotropic materials.

Relations for the boundary conditions of a simply supported rhombic plate, expressed in skew co-

ordinates, must also be determined. The simple support condition requires that the transverse

displacement and normal bending moment be zero on each edge
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w:0) w_0}M u=O at u=0, a M v=0 at v=0, a (112)

The convention adopted for the bending moments is shown in Figure 14-B. Note that the labels

M. and M, do not, as is the case in an orthogonal coordinate system, mean that they are integral

resultants of normal stresses crr and a,. Instead, the subscripts merely imply that the moments act

on edges parallel to u = 0 and v = 0, respectively.

The moment acting normal to the edge u = 0 oriented at an angle 4>above the x axis can be ex-

pressed as s9

M,, = sin24,Mx + cos2,/,My - 2 sin4,cos 4,M_

__2M_ 1
c 2 s

(ll3)

where M., My, and M.3 are the usual moment resultants in the Cartesian coordinate system. These

moments can be expressed as functions of curvatures as follows _7

M x = - (D 1lW,xx + D12w,yy + 2D16w,xy)

My = - (Dl2W,xx + D22w,yy + 2D26w,xy )

Mxy = - (Dl6W,xx + D26w,yy + 2D66w,xy)

(114)

Substituting Equation (114) in Equation (113) and collecting coefficients of the curvatures gives

Dll D12 2D16 ] [ /912 D22

__2[ Dr6 + D26 2D66 ]C 2 $2 SC W'xY

2D26 ]$C W,yy

(115)

Substituting for w .... w,xy, and w,n from Equation (102) and gathering coefficients of w .... w .... and

w,. gives M. completely in terms of skew coordinates
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c2]D22 W,uu
Mu= -- 7D, I -"_-O,6 + 2(O12+ 2066)-'-_" D26 + s2

-- 7DII+2D12+-4D66+TD22 w,w
(116)

The geometric boundary conditions for the pair of simply-supported edges under consideration

(u = 0 and u = a) require that w(O,v)= 0 and w(a,v)= 0. The displacement function chosen for

w(u,v) must satisfy these boundary conditions in order to be an admissible function in the Ritz or

Galerkin solution methods. Assuming that w is equal to zero along these edges, then w,,, must

vanish along the edges as well. The second requirement for a simply-supported edge is that the

moment normal to that edge, M_, be zero. Setting w,,,- 0 and M_--0 in Equation (116) and

$2C2

multiplyingthrough by _ yields

1

4D22
[saD11 - 4s3 cD16 + 2s2c2(D12 + 2D66) - 4sc3D26 + caD22]W,uu

4
1 [SaDl - 2s3cDi6 + 2sc3D26 c D22]W,uv = 0

+ "2_22 1

(117)

It will be recognized from Equation (104) that the coefficient of w,_, is identical to kl and the co-

efficient of w,_, is equal to 2k 2. Thus the requ_ement for moment-free edges can be summarized as

2k 2

W,uu = - _ W,uv at u -- 0,a (118)

An analogous procedure for the other pair of edges yields

2ka

w,vv=----_-s W,uv at v=O,a (119)
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As was done with the differential equation, the boundary conditions a_re also converted to nondi-

mensional form, but the expressions remain essentially unchanged. The nondimensional simple

support boundary conditions are

2k 2

w=0, w,_=- k-----_w,¢,) at _=0,1

w = O, w,,_,r = ks w,¢,) at ii = 0,1

(120)

Derivatives of Displacement Function

Certain methods for the solution of plate stability problems, including direct substitution and the

Galerkin method, use the governing differential equation in a form similar to that in Equations

(10 1) or (1 10). For these methods it is necessary to differentiate the chosen displacement function

up to the fourth order in both spatial variables. When the displacement function is expressed as a

Fourier series, this process is generally accomplished via term-by-term differentiation. However,

GreenS_ ss and later Whitney S° 5152 53 s4, Sun60, and Kennedy and Prabhakara _ 49 have argued that

justification for differentiating a function in this manner implicitly assumes that the function satisfies

the boundary conditions. In an alternate method, first proposed by Green 57, each derivative of the

function is expanded in a new Fourier series with unknown coefficients that are defined in the usual

way. When the Fourier coeffÉcients for a series defining one of the derivatives axe evaluated, these

coefficients can be related to those of the original series through partial integration. When this

method is applied to problems where the function satisfies all boundary conditions, the resulting

expression is identical to that found by term-by-term differentiation. However, in problems where

the boundary conditions are not automatically satisfied, extra terms will appear in the new Fourier

expansion. These account for the unsatisfied boundary conditions and would not appear for dif-

ferentiation on a term-by-term basis.

As an example, let f(x_v) be a function which can be expanded in a double sine series over the region

0<x< a, 0<y< b 5°
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mr.),

m==[ n_]

(O<x<a,O<y<b) (121)

If the the partial derivative f,x can be expanded in a cosine-sine series

oo oo

f,x(x,y) = ,,cos _ sin b
m=O n=l

(O_x_a,O<y<b) (122)

then from Green's method the coefficients axe

a/, z

B°"- 2

Bm" = m_r Am n + an (m even, m ¢ 0)
a

-- tort Am n + bn (m odd)a

(123)

with

a.=-_- _a_v) -AO,v)] dy

4 /0_ nnybn=--- _ {./Ia_v) + fl0 d)) ] sin ----_--- dy

(124)

Term-by-term differentiability depends on the boundary conditions satisfied by f{x_v). If f vanishes

on the boundaries x = 0 and x = a, then a, and b. in Equation (124) vanish, the coefficients in

Equation (123) are identical to those found by term-by-term differentiation, and the series in

Equation (121) is term-by-term differentiable.

In the present problem the deflection function is chosen in the form of a double sine series

w(_, .)=

oo

m=l n----I

(O_l,O_n_l) (125)
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with Fourier coefficients defined by _1

fo'fo'Am. = 4 w(_, '7) sin rrm_ sin n'x_l d_ drl (126)

The deflection function (125) satisfies the geometric (zero displacement) boundary conditions, so

it can be differentiated term-by-term up to the second order in _ and ,t. However, Equation (125)

does not satisfy the conditions for zero edge moments in Equations (120). Therefore further term-

by-term differentiation of Equation (125) is not valid. First consider the second derivative of

Equation (125) with respect to

oo _o

w,_¢I¢,.)=-.,_ _ _A,,,,,,,,2sin,.,.¢ sin._.
m=l n==l

(0<_< 1,0<_/< 1) (127)

Expanding w,¢¢¢ in a new Fourier cos-sin series

oo oo

p=O q=l

or

oo oo oo

w,,_(_,_) = 2Boqsinqn.+ Z ZBpq cOsp'tr_ sinqn_

q_=l p----I q=l

(128)

with the Fourier coefficients defined as

f0'f0'Boq = 2 w,¢¢_ sin qn_l d_ d_l

Io'fo'Bpq = 4 w,_ cosp-x_ sin qlr_ d_ d.

(129)
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Evaluate B_, rearranging as

Boq = 2 sin q_r7 w,¢g_ d_ d7 (130)

The partial integration with respect to _ gives

_01 _,--1w,¢¢_ d_ = [w,_¢]_= 0

= Ewq_(l, 7) - w,¢¢(0, 7)3

(131)

The moment-free boundary condition relations developed earlier are now used to fred expressions

for wq_(0,7) and w,_(l,7). An expression for w,_ obtained through term-by-term differentiation of

w(_,7) is still valid at _ = 0 and _ = 1. Differentiating Equation (125) with respect to _ and 7 and

substituting this expression for w,_ in the ftrst of Equations (120) gives

OlD OO

2: 2Y,Z
w,¢¢(_, 7) = kl Amnmn cos mrr_ cos nn 7 at _ = 0,1

m=,l n_=l

(132)

Evaluating Equation (132) at the boundaries of the domain

2rt2k2

at _ = 0 w,¢_(O, 7) = kl

2_r2k2

at _ = 1 w,¢¢(1, 7) = kl

Z YAo mncos  
m=l n_-I

oo oo

E
m_-l nml

(133)

and substituting the above in Equation (131) yields
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21r2k2 oo oo

 A om cos  E(-1) II
m----I n-_l

4_r2k2 oo oo

k I E E AmnmncOstmr/F_O
mini tl-_l

(134)

with the function F_o defined as

1, i odd=-- 0, /even (135)

The expression in Equation (134) is substituted for the term in the square brackets in Equation

(130) to have for B0_

f01 [ 4n2k2 _, _, ]Boo = 2 sin qlrr/ _11 Amnmn cos nnr/F_0 dr/
msl nml

(136)

Rearranging to remove terms which are not functions of _ from under the integral sign

8n2 k2 E Amnmn F_o sin qlrr/ cos n_r/dr/
Bop- _ ,_-_,_-_,

(137)

and evaluating the integral over ,1 gives the final expression for B0q

8rr2k2 o_ oo

mzl nzl

where

F_IJ_

, (i +l) odd
n(]2 _ i2) (139)

0, (i +l) even
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Returning to Equation (129), the expression for B. must also be evaluated. First rearrange the

second of Equations (129) to isolate functions of _ under the integral

B_ = 4 sinqn_l . w,_¢_cospr¢_d_ d_
(140)

The integral of the term inside the brackets is evaluated using integration by parts, and leads to

f01-- [w,¢¢ cosprr_']¢= ° - w,¢_[ -pn sinpn_']d_ (141)

where I has been used to designate the integral over ¢ in Equation (140). Substituting the limits into

the first term (l_) in I gives

11= wq_(l, )1)cos prr - w,¢_(0, )7) (142)

The expressions for wq_(1,)/) and w,¢_(0,)/) are obtained from Equation (133) while

cosprr = ( -I)P. These give the final expression for I_

IrI 2_2k2 _ _'_Amnmncosnn_[(-l)m(-l: - 1]
"_1 m==l n_,l

oo4 2k2 cos
"_1 m==l nml

(143)

with

1, (i+j) odd (144)_2J - 0, (i +]) even

Replacing the ftrst term in Equation (141) with I_ from Equation (143) completes the expression

for I. Substituting Equation (141) for the bracketed term in Equation (140) and evaluating the in-

tegral over 1t leads to
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So' So ]Bpq=4 sinqn_l -fill m=! n=lAmnmnc°srtnvlF_2P+n p w,_sinp'x_d_ d_

oo

fo'-- k! AmnmnF_ p sin qlrr I cos rm_/dq
m=l _=1

:o':o'+ 4_p w,¢¢ sinp_ sin qnn d_ dn

(145)

From earlier calculations the single integral equals _q. The double integral is merely the definition

of the Fourier coefficients for the sine-sine expansion of w,_¢(_,_). This expansion has already been

found through term-by-term differentiation and is shown in Equation (127). Therefore, the double

integral is equal to - _r_/PAp_,leading to

6rr2k2 oo oo

Brq = 1 kl 2 2 Amnmn F_lqF_P - n3P3Apq
m----In=l

(146)

Replacement of Bo. and Bn in Equation (128) by Equations (138) and (146) gives an expression for

w,_¢¢entirely in terms of the original Fourier coefficients A.=

oo oo

w,=_¢(¢,7)= --_ _'/._p_ co_:_¢sinq..
p=lq=l

oo oo oo

8n2k2 2sin q_q 2 ZAmnrr_O _ll q+ k---_

16n2k2zz _+ k-""'_ COSp_r_sinqn, Amnmnl_lqF_ p
p=lq=l m=ln=l

(147)

A procedure completely analogous to that just discussed for w,¢¢¢ yields a similar expression for

Wp_
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oo oo

WPl_l_l_ _ _ I1_3 Z Z Apqq3 sin p_ _ siJ_ q'li'l_

p----Iq----I

oo oo

+
k_ p...-I m_l n--I

_Z16_t2k'k5 oo_, _,
+ sinFx¢ cos qn_ Amnm P qttF_lF_

p=l q=l m----I n_.l

(148)

Fourth order derivatives of w can be obtained by performing term-by-term differentiation of w,_¢

and w,,,_. The exception is w,,_, where term-by-term differentiation of the original function w in

Equation (125) is allowed as the derivatives in _ and rt are each of only second order.

All derivatives required to solve the plate stability problem by the Galerkin method are summarized

in Equation (149). Note that the summation indices on the first line of both Equations (147) and

(148) have been changed from p,q to m,n to make all summations over Am, consistent. Also, the

single summation over q in Equation (147) is changed to one over p to make it the same as that in

Equation (148).
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oo oo

Ws_ ff E _ AmPI/'}'I 2Sin _Wl/1_ Sill JPl'Irl_

m=l n=l

c_ _

mml t'Iml

oo oo

=,: co,, ,I
mwl n_l

W,,_Fl _- _r4 _ _ Amn_")Jl_2 _ m_ sin nTlrF l

m=l n=l

oO oo

"22 ""w,_¢_ = n Amnm sm rr_ sin rre_
m----1 n=l

161r3k2 _, oo oo
kl _p sin prt _ sin qn_t _ _AmnrnnF_lqF_2 '

p--I q---1 m=l n=I

m-_l n-._l

16 3 _,K4 oo oo oo oo

k s _ Eqsinlr/r_ sinqn_l E _Amnmn_lrF_2 q
p=l q=l m=l n=l

oo oo

W,_I_ = -- "l_4 _ _Am.m3n cos m_ CO_t_l_

m----I n-_l

+ k-"--'_pffil m,=l nffil

+ _ cos q_/
p=,l q_l m=l n=l

m=l n._-I

+ k---_-
p=l m=l n_l

16_r3k4 _5 _,, _
+ k5 cosprr_ cos qnn Amnmr_lPF_2 q

p=l q_l m--I n=l

(149)
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Solution Procedure

The approximate solution of a boundary value problem can be achieved using a weighted-residual

method known as the Galerkin method 62. In the Galerkin method, a solution is assumed in the

form w = _e#_. The unknown parameters e, are determined using a weighted-integral form of the

differential equation, where the weighting function _b,is of the same form as the approximation

function 4,.

In the present problem, the approximation function has already been chosen with the form

sin rnn_ sin mrs/, requiring that the weight function have the corresponding form sin iTr_ sinj_rff .

Therefore, the Galerkin equation for this problem is found by multiplying the differential equation

(11O) by the weighting function and integrating over the domain of the plate 2_

fo;o [klw,_¢¢_ + 2k2w,_¢rt + 4k3w,¢_, m + 2k,,w,_rmn + ksw,,rmm
i= 1,2..... oo

+ 2{N'_w,¢_ + N-"_nw,_.+ Nnw,..}]sininCsinJ n"a¢ d.--0 j= 1,2,..., c_

(150)

The derivatives of w, as listed in Equation (149), axe substituted in this equation and the inte-

grations performed. Since the approximation and weight functions are trigonometric functions,

they axe orthogonal and the integrations axe relatively straightforward. The results of these inte-

grations are abbreviated using the symbols defined in Equations (139) and (144). Common coef-

ficients of summations axe collected to present the final solution in the form
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,:[k: +k i5 + 1
N N

+2562m=1 Amn P"_li KS/ J

N N N N [ 2 2 ]

y,2 2Y,'J '" J+ 256re Amnmn _ F_I _ qF_l F_2
ra=l n----I p=l q=l L 1

= 2 i2 +j2 A_I + 8N--'-¢,7 Amnrnn_l i i = 1,2 ..... N
m=l n=l j = 1,2 .... , N

(151)

The constants k,..... ks are defined in Equation (104) and expressions for the factors N_, N_,, and

N, are shown in Equations (108) and (111). To solve the plate stability problem it is, of course,

necessary to truncate the infinite summations shown previously. The number of terms is chosen

such that the desired degree of solution accuracy has been achieved. Since the plate is of equal di-

mensions in the _ and ,7 directions, an equal number N of terms for m and n axe usually taken in

Equation (125). Therefore Equation (151) represents a set of (N 2) linear equations for the (N 2)

unknown coefficients Am and constitutes a classical eigenvalue problem. If the set of equations is

examined, it will be seen that any equation for which (i +j) is odd will contain only coefficients A,,,

for which (m + n) is also odd. Also, any equation for which (i +j) is even contains only Am for

which (m + n) is even. Thus, these two sets of equations are completely uncoupled and can be split

into two separate sets for solving. One set will contain terms in which (i + j) and (m + n) axe both

even, while the other set will contain terms in which (i +J1 and (m + n) are both odd. Physically,

the modes for which (i +J1 axe odd represent antisymmetric modes and those for (i +]) even are

symmetric modes. The critical load for the plate is that given by the lower of the two distinct even

and odd groups.

It is also interesting to compare this solution to those obtained by use of either the modified

Galerkin method with all derivatives computed via term-by-term differentiation or the Rayleigh-

Ritz method. If this is done, solutions identical to that in Equation (151) will be obtained, except
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that the termsin the third and fourth rows (the terms with a coefficient of 256) would be

missing '9. As a result, comparisons between the standard solutions and Kennedy's solution are

easily accomplished by ignoring or including, respectively, those extra terms.
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4.0 Verification and Examples

In Section 3, analytical formulations were presented for the prebuckling load distribution and sta-

bility of geodesicaUy stiffened panels, the stability of orthotropic stiffeners, and the stability of

anisotropic rhombic plates. Since these represent new developments, it is necessary to determine

whether they yield results with reasonable accuracy. Where available, results published in the lit-

erature are used as benchmarks to verify the present methods. Otherwise, results generated with

an established finite element program are used for comparison. The analysis method for buckling

of stiffened panels is treated in Section 4.1 and that for buckling of anisotropic rhombic plates in

Section 4.2. Verification and examples for the stiffener buckling analysis axe covered by StolpS, so

that topic will not be discussed here.

4.1 Stiffened Panel Buckling

The formulation for the stability of a geodesically stiffened orthotropic panel, using the Lagrange

multiplier method [LMM], was presented in Section 3.2.1.3. Since the LMM analysis represents a

new approach to the buckling of stiffened panels, the performance of the method is studied in detail.
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InSection4.I.I,LMM analysisresultsforseveraldifferentpanelconfigurationsarecompared with

resultsof otherproceduresforverificationof themethod.The firsttestcaseisa sirnplcisotropic

panelwitha singlelongitudinalbladestiffenerunderuniaxialcompression.An analyticalsolution

to thisproblem basedon energymethods isavailablein,among others,Timoshcnko and Gcrcas

and Scideand Stcin4LThe secondtestcaseisa squareisotropicplatewithseverallongitudinal

bladestiffenersundercombinationsofcompressionand shearloads.Thisproblemhas beenana-

lyzedby Stroud,eta163usinga detailedfiniteclcrncntmodel. For thethirdexample,no rcfcrenccs

treatingthebucklingofgcodcsicallys.tiffcncdpanelshavebeenfound intheliterature.Therefore,

a threecellcross-stiffenedpanelundercompressionisanalyzedusingan establishedfiniteclement

program. In Section4.1.2,a convergencestudyisconductedfortheLMM analysisto isolatcthe

effectof variousparameterson the results.Thcsc parametersincludcthenumber of constraint

pointsalongthestiffenersand thenumber oftcrrnsintheskindeflectionfunction.Illustrativeex-

amplesarcalsopresentedwhichdemonstratetheinflucnccofstiffenerflexuralrigidityon thecritical

loadand buckledmode shapeofa typicalgcodcsicallystiffenedpanelundercompressionor shear.

4.1.1 Verification of Analysis Method

Three panel configurations are considered for verification of the Lagrangc multiplier method

[LMM] analysis. The first example is an isotropic plate with a single longitudinal stiffener. This

was the first problem attempted during the development of the LMM analysis, as a basic verifica-

tion of the concept. For this simple geometry, the stability analysis can be accomplished without

the use of Lagrangc multipliers. An energy formulation for the plate and longitudinal stiffener,

similar to that given in Section 3.2.1, is still used. Recall that in the LMM analysis, the deflection

of a stiffener (often oblique) is expressed in an independent function and then displacement com-

patibility with the skin is imposed at a finite number of points. The deflection of a longitudinal

stiffener, on the other hand, can easily be expressed in terms of the skin deflection function w di-

rectly, resulting in continuous skin-stiffener displacement compatibility. Timoshenko and Ger_
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have solved the buckling problem for isotropic plates with a single central longitudinal stiffener

under uniaxial compression. The chosen test configuration is a plate 12 inches square and 0.1 inch

thick with a stiffener 0.527 inch high by 0.228 inch thick. Timoshenko and Gere assume that the

stiffener blade is located on one side of the plate only, and calculate an effective moment of inertia

for the stiffener with respect to the surface where it meets the plate. Finally, the plate is free to ex-

pand in the X direction under Y direction compression. The buckling load predicted by the LMM

analysis rises as the number of constraint points increases, and exact agreement with the

Timoshenko and Gere solution is achieved with only three constraint points along the stiffener

(Table 2).

Table 2. Comparison of Buckling Parameters for lsotropic Plate with One Longitudinal Stiffener

Timoshenko and Gere _

Buckling Parameter

KTimoshamko

1.170
1.170
1.170
1.170
1.170

Lagrange Multiplier Method

Constraint
Points

1
2
3
4
5

Buckling Parameter

KLuu

0.457
0.813
1.170
1.170
1.170

KLMM

Kl"_moshwnko

0.391
0.694
1.000
1.000
1.000

In a second, more demanding test, results from the LMM analysis are compared with data gener-

ated by Stroud, eta163 for square metallic plates with longitudinal blade stiffeners, under com-

pression and shear. Although data for composite blade-stiffened panels is included in the report,

an angle-ply stiffener layup was used, while the present analysis can only accommodate

unidirectional stiffener material. Internal load distributions and buckling loads were computed by

Stroud, etal using the linked-plate program PASCO and finite element programs EAL and

STAGS. The test panels were 30 inches square with six equally-spaced blade stiffeners on one side

of the skin. All four edges of the panel, including both stiffeners and skin, were simply supported.

The loads were combinations of uniaxial compression N_ and shear Nxr The panels were modelled

with the EAL finite element program using a four-node, quadrilateral, combined membrane and

bending element. Two elements were used along the depth of the blade, 4 elements between the
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blades, and 36 elements along the stiffener length, for a total of 1296 elements and 1369 nodes. The

geometry and finite element mesh for the stiffened panels are shown in Figure 15.

Several modifications to the LMM analysis program were requiredto accommodate the test panel

geometry. The spacing of the longitudinal stiffeners in the paper differs from the convention in the

present design study. Also, free expansion in the X direction of the plate under Y direction com-

pression was required. The fact that the stiffeners are only on one side of the plate must also be

accounted for. Various approaches have been suggested in the literature to calculate an apparent

or effective moment of inertia for stiffeners on one side of a plate. These attempt to account for

the fact that bending of the panel causes the skin to undergo significant stretching, thereby in-

creasing the apparent flexural rigidity of the stiffeners. The method proposed by Timoshenko and

Gere _ is to calculate the stiffener moment of inertia with respect to the surface where the stiffener

meets the plate. This convention was used in the previous example with the single longitudinal

stiffener. For the multiple stiffener panel an effective-width concept described by DonnellU was

chosen. This approach calculates an effective moment of inertia for each stiffener dependent on its

position with respect to the edges of the panel. This results in a different moment of inertia for each

of the three (using symmetry) stiffener positions. The LMM analysis program, however, presently

assumes that the moment of inertia is the same for every stiffener. Fortunately, the three effective

moment of inertia values calculated using the Donnell method varied very little, so they were av-

eraged to arrive at a single value. The changes in stiffener spacing, transverse boundary condition,

and stiffener moment of inertia were temporarily implemented in the LMM analysis program for

the purposes of this example. The panels were analyzed with 21 and 15 terms in the Xand Ydi-

rection portions, respectively, of the skin deflection function (M = 21, N = 15) and 15 constraint

points per stiffener (K-- 15).

Two different panel skin thicknesses were considered by Stroud, et al. The first test panel had a

stiffener height of 1.352 inch (measured from the rrddplane of the skin), a stiffener thickness of 0.058

inch, and a skin thickness of 0.084 inch. The prebuckling internal load distribution was calculated

using PASCO, which was then input to EAL for the buckling analysis. In the LMM analysis the
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Figure 15. Longitudinally Stiffened Isotropic Panel for Verification of LMM Analysis: A) Geometry
and Loading B) Finite Element Mesh [After Stroud, el a163]
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static load distribution is predicted by smearing the in-plane properties of the panel, as described

in Section 3.1.1. The skin and stiffener loads computed by the smeared analysis are compared with

the PASCO results in Table 3. For the combined extemaUy applied load of Ny = Nx, = 1000 lbf/in

the two methods, as expected, are in perfect agreement. Note that the stiffener shear load for the

smeared analysis is assumed, not calculated, to be zero.

Table 3. Comparison of Prebuckling Internal Load Distributions for Longitudinally Stiffened isotropic
Panel, Thick Skin

Load Applied to Panel:

Internal Skin Load Resultant (lbf/in)
Load Type

PASCO Smeared PASCO Smeared

Compression 842.67 842.67 581.84 581.84
Shear 1000.00 1000.00 0 =0

N: = N,: = 1000 lbf/in

Stiffener Load Resultant (lbf/in)

The buckling loads from the EAL finite element method [FEMI analysis and the LMM analysis

are compared in Table 4. For all applied load combinations, the LMM analysis critical eigenvalues

are higher than those predicted by the FEM analysis, but differ by only 2.8% to 6.2%. Buckled

mode shapes for the panel loaded by pure shear are shown in Figure 16. The modes predicted by

the two methods are very close in form.

Table 4. Comparison of Buckling Loads for Longitudinally Stiffened Isotropic Panel, Thick Skin

Applied Loads (lbf/in)

Compression N:

0
400

1000
2000
5000
1000

Shear Nq

1000
1000
1000
1000
1000

0

Critical Eigenvalues 2cR

_FEM _LMM

0.8138 0.8362
0.7195 0.7401
0.6061 0.6237
0.4444 0.4588
0.1929 0.2049
0.9759 1.0358

1.028
1.029
1.029
1.033
1.062
1.061

The second blade stiffened panel studied by Stroud, et al was identical to that in the previous ex-

ample, except that a thinner skin of 0.050 inch was substituted for the 0.084 inch skin. The

prebuckling load distribution as given in the report and as calculated by the present smeared anal-
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Figure 16. Comparison of Buckled Mode Shapes for Longitudinally Stiffened isotropic Panel, Thick
Skin, Shear: A) FEM Analysis [After Stroud, et a/63] B) LMM Analysis
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ysisare again in exact agreement. The buckling analysis results, however, differ from those in the

thick skin example as all LMM buckling loads are now more conservative than the FEM pred-

ictions (Table 5). The LMM pure shear buckling load is about 5% low while all compression-

loaded panel LMM buckling loads are very consistent but around 10% low. The buckled mode

shapes predicted by each analysis method are shown in Figure 17 for pure shear and also in

Figure 18 for uniaxial compression. For both load conditions the mode shapes appear virtually

identical.

Table 5. Comparison of Buckling Loads for Longitudinally Stiffened lsotropic Panel, Thin Skin

Applied Loads (lbf/in)

Compression Ng

0
400

1000
2000
4000
1000

Shear N,_,

1000
1000
1000
1000
1000

0

Critical Eigenvalues 2cR

_FEM _LMM

0.2767 0.2633
0.2491 0.2255
0.1881 0.1693
0.1253 0.1125
0.07064 0.06332
0.2965 0.2656

0.952
0.905
0.900
0.898
0.896
0.896

Some observations may be made regarding the LMM and FEM buckling analysis results. In the

fu'st, thick-skin example the panel buckled in three half-waves across the six stiffeners (Figure 16).

For this generaliTed out-of-plane mode with large stiffener deformations, the the LMM results were

higher but, in most cases, comparable to the FEM results. The second, thin-skin panel, on the

other hand, has buckling modes which are more localized, particularly so for compression. The

LMM buckling loads are all conservative with respect to the FEM results, but again to a greater

degree when compressive loads are present. It is possible that critical loads for localized buckling

modes are underestimated by the present LMM analysis due to the lack of local restraint at the

junction of the skin and stiffeners (a result of neglecting stiffener torsional rigidity). Caution should

be used in this interpretation, however, as the LMM results for these two panels are somewhat

dependent on the method of estimating the effective moment of inertia for the stiffeners.
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Figure 17. Comwison of Buckled Mode Shapes for Longitudinally Stiffened Isotropic Panel, Thin
Skin, Shear: A) FEM Analysis [After Stroud, et al 63]B) LMM Analysis
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Figure 18. Comparison ot"Buckled Mode Shapes for Longitudinally Stiffened lsotropic Panel, Thin
Skin, Compression: A) FEM Analysis [After Stroud, ez al 63] B) LMM Analysis

Verification and Examples
103



To complete the verification of the LMM analysis, it was desired to check results for a geodesically

stiffened panel. However, no references with buckling data for geodesically stiffened panels were

found in the literature. Therefore, the finite element program CSM Testbed _ was used to analyze

a typical geodesic panel under unlaxial compressive load. The test panel, 80 inches long by 28

inches high, had three cross-stiffened cells. The quasi-isotropic [-45/45/90/0]s skin laminate was 0.2

inch thick, the stiffeners were 0.2 inch thick, and four different stiffener heights of 0.5, 0.75, 1.0, and

1.25 inch were considered. Material properties used are as shown in Table l on page 23. For the

FEM analysis, the panel was modelled with nine-node combined membrane and bending

quadrilateral elements. A mesh 18 elements long by 6 elements wide for the skin along with 6 ele-

ments long by 2 elements deep meshes for each stiffener was selected, for a total of 180 elements.

The panel geometry and finite element mesh are shown in Figure 19. The LMM analysis used 17

and 9 terms in the X and Y direction, respectively, skin deflection functions and 13 constraint points

per stiffener (M = 17, N = 9, K = 13).

The first step in the FEM analysis of the panel is a static analysis, where a uniform axial displace-

ment in the Y direction is imposed. Equivalent load resultants arc calculated by summing nodal

reactions and averaging the total load over the panel width. The distribution of the applied load

between the skin and the stiffeners, as predicted by the smeared analysis, agrees closely with the

FEM results (Table 6).

Table 6. Comparison of Prebuckling Internal Load Distributions for Geodesically Stiffened Panels

Load Applied to Panel: N_ = 1000 lbf/in
Stiffener

Height (in) Skin Load Resultant (lbf/in) Stiffener Load Resultant (lbf/in)
FEM Smeared FEM Smeared

0.5 939.3 939.4 1117 I 115
0.75 911.6 911.8 1084 1082
1.0 885.6 885.8 1053 1051
1.25 861.0 861.2 1024 1022

The compressive buckling loads predicted by the FEM and LMM analyses are compared for these

same panels (Table 7). The LMM prediction is only 60% of the FEM result for the 0.5 inch
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Figure 19. Geodesically Stiffened Panel for Verification of LMM Analysis: A) Panel Geometry B)
Finite Element Mesh
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stiffener, but as the stiffeners become higher the correlation increases to 95% for the 1.25 inch

stiffener. In the FEM analysis, the loads on the panel were introduced by imposing a uniform

displacement on all skin and stiffener nodes along the top of the panel. Therefore, the end of each

stiffener is constrained to remain vertical, thereby simulating a clamped condition at the ends of the

stiffeners. However, the condition assumed at the ends of the stiffeners in the LMM analysis is

simple support. As such, the stiffeners in the LMM model do not stiffen the skin as effectively as

they do in the FEM model, resulting in considerably lower buckling loads. The discrepancy is

greater for the short stiffeners as they have a low flexural rigidity and deflect almost as much as the

skin. On the other hand, the higher stiffeners possess a large flexural rigidity and hence deflect little,

so that the restraint condition at the ends of the stiffeners does not have as much of an effect.

Table 7. Comparison of Buckling Loads for Geodesically Stiffened Panels

Stiffener
Height (in)

0.5
0.75
1.0
1.25

Panel Buckling Load (lbf/in)

NFEM NLMM

573 342
705 613
748 708
783 743

NLMM

NFEM

0.596
0.870
0.946
0.949

The buckled mode shapes from the FEM analysis are shown in Figure 20 and those from the

LMM analysis in Figure 21. The trends seen in the plots seem to correspond with the buckling

load data. That is, for the 0.5 inch stiffened panel, the FEM contour plot (Figure 20-A) indicates

that the stiffeners have more of an effect on the skin than they do in the LMM plot (Figure 21-A),

and therefore the buckling load is higher. As the stiffeners become higher, the contour plots be-

come more similar in form, and the FEM and LMM buckling loads also agree more closely. LMM

analysis buckling loads for the more heavily stiffened panels (1.0 and 1.25 in), which buckle in a

localized way (Figure 21-C and Figure 21-D), are on the conservative side but agree quite well with

the FEM results. In most practical cases, it is expected that optimum geodesic panels will have

relatively heavy stiffening. Unless a panel were designed for very light loads, where a minimum-

gauge skin thickness bound can force the skin to be thicker than desired, the critical mode will likely
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be more localized, as in panels C and D. Therefor=, the critical loads predicted with the LMM

method should be acceptably accurate, perhaps within 5-10%.

As a final note, the LMM and FEM analyses were run on different computer systems at Virginia

Tech. Therefore, no comparison is possible as to the relative computational demands of the two

methods. However, it is believed that the LMM analysis runs significantly faster than the corre-

sponding FEM model while, as demonstrated above, retaining a reasonable degree of accuracy for

practical panel geometries.

4.1.2 Convergence Study

The influence of several factors, including stiffener flexural rigidity and the analysis parameters

M,N, and K, on the buckling behavior of a typical geodesically stiffened panel is examined in this

section. First, a qualitative demonstration of panel buckling response under compression or shear

is presented by changing the flexural rigidity of the stiffeners. Second, it will be remembered that

the Lagrange multiplier method [LMM] analysis, presented in Section 3.2.1.3, is dependent on se-

veral analysis parameters. These include the number of constraint points K along each stiffener and

the number of terms M,N in the X, Y directions of the skin deflection function. Since these pa-

rameters determine the accuracy of the results obtained, their influence on the solution for a typical

geodesicaUy stiffened panel is examined. The geodesic configuration chosen for the study is a four

cell cross-stiffened panel. In all examples, the thickness of the panel skin and the cross-sectional area

of each stiffener remain unchanged, fixing the panel mass.

Stiffener Flexural Rigidity: To examine the influence of stiffener flexural rigidity on the panel

buckling mode, the rigidity of the stiffeners is increased by making the aspect ratio (aspect ratio

JAR] is defined as stiffener height divided by stiffener thickness) larger while keeping the cross-

sectional area constant. Since the present LMM analysis does not account for the torsional rigidity
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Figure 20. Buckled Mode Shapes for Geodesically Stiffened Panels, FEM Analysis: A) SH = 0.5 B)
SH - 0.75 C) SH _ 1.0 D) SH = 1.25, SH -- Stiffener Height (in)
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Figure 21, Buckled Mode Shapes for Geodesically Stiffened Panels, LMM Analysis: A) SH = 0.5 B)
SH = 0.75 C) SH = 1.0 D) SH = 1.25, SH = Stiffener Height (in)
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of the stiffener, the only effect of changing aspect ratio is on the stiffener moment of inertia. For

a short, thick, and therefore flexible stiffener (for example, AR = 0.4), the buckling mode of the

panel in compression is a single half-wave in each direction with a large out-of-plane excursion by

the stiffeners (Figure 22-A). As the aspect ratio is increased, the stiffeners become more rigid,

stiffener deflection is reduced, and local inter-stiffener buckling of the skin emerges (AR = 6.1, Fig-

tare 22-B; AR -- 66, Figure 22-C). In Figure 23 the stiffened panel buckling load, normalized with

respect to the maximum value achieved, is shown as a function of the stiffener moment of inertia,

which is similarly normalized. For a given skin thickness, the buckling load does not increase in-

definitely, instead approaching the maximum value asymptotically. Once skin buckling becomes

the limiting mode of instability, subsequent increases in stiffener rigidity produce no increase in the

load carrying capacity of the panel. Although high, thin stiffeners are efficient due to their large

moment of inertia, their aspect ratio is limited by the stiffener crippling constraint. In Figure 23,

the solid circle on the curve indicates the point at which the stiffener cripples (using the analysis

of Section 3.2.2), rendering designs to the right of this point infeasible.

The panel buckling response to shear loading is analogous to that for compression. That is, a

global mode involving considerable deflection of the flexible stiffeners progressively changes to a

localized, short wavelength mode between rigid stiffeners as the stiffener moment of inertia is in-

creased (Figure 24). For panels under pure shear loading, oblique stiffeners with an axial tensile

load (angled upwards and to the left) tend to enforce lines of zero deflection even when they have

a small moment of inertia. On the other hand, those stiffeners with an axial compressive load

(upwards and to the right) are more likely to deflect in multiwave modes. The curve for critical

shear load versus stiffener moment of inertia is very similar to that in Figure 23 for compressive

loading, so it is not shown. For shear loaded panels, the aspect ratio of stiffeners with compressive

axial loads is again limited by the stiffener crippling constraint. The tension-loaded stiffeners are

required to have identical dimensions to the compression-loaded ones to prevent panel designs

which would be sensitive to the direction of applied shear.
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Constraint Points K: To demonstrate how the number of constraint points per stiffener K influ-

ences the LMM analysis, examples start with a single point at the center of each stiffener and the

number of points evenly distributed along the stiffener length is then increased. For a simple ex-

ample, return to the compressed isotropic plate with a single central stiffener from Section 4.1. I.

The buckling load is very low for a single constraint point at the panel center, as the skin merely

pivots about the constraint point, leaving the stiffener undeflected (Figure 25-B 1). However, using

two (Figure 25-B2) and then three (Figure 25-B3) constraint points forces the skin and stiffener

deflections to quickly coincide to a satisfactory degree.

For a more practical demonstration, a moderately stiffened (sufficient to enforce local skin buckling)

four cell geodesicaily stiffened panel is analyzed under both compression and shear loads. In

Figure 26 the panel critical load, normalized with respect to the maximum load achieved, is shown

as a function of the number of constraint points per stiffener. For the compression-loaded panel,

only four constraint points per stiffener are required to reach 99% of the stable critical load reached

with a larger number (11) of points (Figure 26, upper curve). Although slower to converge, the

shear-loaded case still requires only eight points per stiffener to reach the 99% level (Figure 26,

lower curve).

Skin Deflection Function Terms MTN: The number of terms required in the skin deflection func-

tion is estimated by increasing the number in each direction until a relatively constant buckling load

is reached. A compression-loaded four cell cross-stiffened panel is considered fast. In Figure 27

the panel critical load, normalized with respect to the minimum critical load achieved, is shown as

a function of the number of terms. The number of constraint points is set to the maximum value,

K = I 1, from the previous example. To isolate the Y direction dependence, the number of terms

in the X direction, M, is set to a large number (in this example, 17) while the number of terms in

the Y direction, N, is varied. When N is set to unity, the skin is forced to have only a single half-

wave in the loading direction Y. Constraining the buckled shape in this manner artificially stiffens

the panel. The buckling load for N = 2 does not change because this term accounts for a deflection

antisymmetric about the panel midheight, which is not the fundamental buckling mode for com-
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pression. The critical load to drops sharply at N = 3, when a sufficient number of terms are in-

cluded to allow the lowest critical mode to be reached (Figure 27, lower curve). Further increases

in N cause the critical load to drop slightly as small improvements in the buckled mode shape are

incorporated. Analogous behavior results when N is fixed (at N = I l) and M is incremented, except

that an intermediate mode occurs for M _ 7 and M = 8 (Figure 27, upper curve). A rough estimate

for the _um number of terms required in each direction of a compressed panel is given by the

maximum number of inter-stiffener sections crossed by a line drawn in each direction. In the present

example, a line can be drawn in the Y direction passing through three subsections and in the X di-

rection traversing nine (see inset sketch, Figure 27). This rule-of-thumb agrees very well with the

results in Figure 27 for this example. For panels with many cells, it is clear that a large number

of terms are required in the X direction to model the many inter-stiffener skin waves. Since the

number of skin deflection function terms is the primary factor determining the computational cost

of the LMM buckling analysis, this sets a practical limit on the number of stiffeners which can be

accommodated.

In Section 3.2.1.2, the buckling of a flat orthotropic plate under compression and shear was con-

sidered. It was noted that an exact solution can be found for the compression case with a limited

number of skin deflection function terms. Under shear loads, however, the skewed deflection pat-

tern cannot be represented exactly by a finite number of terms in the chosen double-sine function,

thereby slowing convergence of the solution. For the geodesically stiffened panel, similar behavior

is observed. Whereas the solution for the compression-loaded stiffened panels drops off suddenly,

the convergence of the shear solution is more gradual and more terms are required (Figure 28)

(note critical load normalized with minimum value, as before). However, a well defined minimum

is still reached, indicating that the solution has converged to an acceptable degree. Note that a

single term in either direction (N = 1 or M = 1) is incapable of modelling the anti-symmetric mode,

resulting in an infinite critical load.

The number of deflection function terms required for a given panel is both geometry and loading-

dependent, but a detailed convergence study cannot be performed for every panel configuration in
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a design study. Therefore, the practice has been to first optimize the panel design using an esti-

mated number of terms. The final design is then analyzed with the number of terms in both the

X and Y directions perturbed by + 2. If the change in critical load is small (less than 1% is the

criterion used in the design study), it is assumed that a sufficient number of terms has been used.

Otherwise, the panel is redesigned using a larger number of terms and the perturbation procedure

is repeated.

4.2 Rhombic Skin Section Buckling

There are several reasons motivating the study of laminated rhombic plate buckling. One objective

is to use the rhombic analysis to estimate the influence of anisotropic coupling terms D_6 and D_,

which has not been included in the LMM panel buckling analysis. A second aim is to isolate the

effects of changing skin section shape or size from other variables in the panel design. A final goal

is to be able to conduct skin laminate optimization considering just the rhombic plate, rather than

analyzing the full stiffened panel. In solving the rhombic plate stability problem, however, it is well

known that standard energy methods give nonconservative results and may be slow to converge

when anisotropy is present. Skewing the shape away from a rectangular planform exacerbates the

convergence problem. For this reason, there is some concern that the effects of changing plate

shape or laminate geometry might be over-estimated by standard methods. The alternate method

adopted for the present work appears to possess the advantage of providing a lower bound to the

critical loads, albeit at the expense of greater computational time. Section 4.2.1 presents a test

problem to demonstrate the performance of both standard and new methods. As mentioned above,

the ultimate goal of the work with rhombic plates is to apply the rhombic results to the design of

geodesically stiffened panels. Therefore, Section 4.2.2 presents a correlation study between the

LMM analysis buckling loads for cross-stiffened panels and the buckling solutions for equivalent

rhombic plates.
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4.2.1 Convergence Study and Comparison With Standard Method

As was noted in Section 3.3, a standard Galerkin or Ritz analysis (hereafter referred to as "Standard"

method) will always predict buckling loads higher than the exact solution. On the other hand, the

solution due to Kennedy and Prabhakara _ ("Kennedy" method) appears to give conservative re-

sults. That is, the solution converges to the exact result from below rather than above. Although

the Kennedy solution is more expensive computationally than the Standard solution, it is this ele-

ment of conservatism which makes the analysis attractive. It is felt that these two methods can be

used to establish upper and lower bounds on the solution, to provide a realistic measure of com-

ponent behavior.

Unfortunately, there does not appear to be an exact solution available for the buckling of a rhombic

or skew plate under in-plane loads, even for the isotropic case, with which to conftrm the validity

of the Kennedy method. However, it is possible to construct a viable test problem using a geometric

analogy. Consider an isotropic rhombic plate with an interior angle of 60 degrees under uniform

biaxial compression (Figure 29-A). The lowest odd or antisymmetric buckling mode has a nodal

line bisecting the rhombus into two equilateral triangles (Figure 29-B). The transverse deflection

along the nodal line is, of course, zero and the existence of an inflection point across the nodal line

indicates that the curvature normal to the line is also zero. For an isotropic plate, the zero curva-

ture condition is sufficient to guarantee that the bending moment normal to the nodal line is also

zero. The supported edges satisfy the geometric boundary conditions, which ensures that the sol-

ution should converge to that for simply supported boundaries. Therefore, this

antisymmetfically-buckled rhombic plate is analogous to a simply supported equilateral triangular

plate under biaxial compression. The exact solution for latter problem has been derived by

Timoshenko and Gere m and Taylor 6_, so it can be used to test the rhombic solutions.

The equilateral triangular plate under consideration has a height of _r and unit flexural rigidity

(D = 1), which results in an exact critical load of N = 4. Comparison of the Kennedy solution with
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the Standard solution is shown in Figure 30, along with the exact solution. As the number of terms

is increased, the standard solution converges, as expected, from above the exact solution and the

Kennedy solution from below (Figure 30-A). Aside from the first few terms, the degree of con-

vergence for a given number of terms appears to be about the same for each method. As the

number of terms N increases, the dimension of the coefficient matrices expand as N2. Since both

methods have the same size matrices, the solver time required for each rises at about the same rate.

However, extra summations in the Kenncdy method formulation (see Equation 151 in Section 3.3)

require many more calculations to form the coefficient matrices (on the order of N 6 for Kennedy

versus N4 for Standard). This results in greatly increased overall computational time (Figure 30-B)

for the Kennedy method. Although it is significantly more expensive computationaUy, the added

cost may be justified in problems where severe over-estimation of critical loads with Standard

methods is suspected.

4.2.2 Correlation With LMM Panel Buckling Analysis

In the past, stiffened panels have been analyzed by viewing the panel as an assemblage of discrete

plates under in-plane loads t_ tT. For the present study this approach will be used to explore several

aspects of the design of laminated composite skins for geodesically stiffened panels. These topics

include the effects of skin laminate anisotropy, skin section shape, and laminate orientation on the

buckling loads of the panel skin. The purpose of this section, then, is to examine the relationship

between the buckling of a simply supported discrete rhombic plate and the local buckling behavior

of rhombus-shaped skin sections in a cross-stiffened panel. The rhombic plate dimensions which

correspond to the skin sections for two to eight cell cross-stiffened panels are shown in Table 8.

The rhombus interior angle = referred to here is equal to 24, in the rhombic coordinate transfor-

mation (see Part B of Figure 14 on page 75).
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Table 8. Equivalent Rhombic Plate Dimensions for Skin Sections of Cross-Stiffened Panels

Number Interior Angle • Side Length a
of Cells (degrees) (inches)

69.98
92.79
108.9
120.5
129.1
135.6
140.7

24.41
19.33
17.20
16.12
15.51
15.12
14.87

The analysis of Section 3.3 assumes classical simple support boundary conditions (zero displace-

ment, zero bending moment) on all four edges of the rhombic plate. This idealization ignores

continuity of the buckling mode between adjacent skin elements in a stiffened panel, and does not

account for the rotational restraint of the stiffeners on the skin. The present LMM buckling anal-

ysis also neglects the effects of stiffener restraint, but since the skin is modelled as a continuous

sheet, inter-element continuity is maintained. For purposes of the rhombic/LMM correlation,

panels with very rigid stiffeners are used in order to limit stiffener deflection and enforce local skin

buckling. This is an effort to make the conditions at the edges of the panel skin sections approxi-

mate as closely as possible classical boundary conditions. In fact, it was observed that the corre-

lation results were independent of the thickness of the panel skin, due to the rigidity of the stiffeners.

Since it is geometric approximations which are being examined here, the coupling terms D16 and D26

are set to zero in the rhombic analysis, as they are in the LMM analysis.

The static analysis of Section 3.1.1 calculated what portion of loads applied to a panel would be

carried by the skin (with the remainder carried by the stiffeners). Although the stiffened panels in

this study are subjected to uniaxial compression, the panel skin is under biaxial compression due

to the X direction zero-displacement boundary condition and the Poisson effect. For the

[-45/45/90/0ls laminate used in this study, this results in transverse compression of N_v = 0.30282

lbf/in for each _yv = 1.0 lbf/in longitudinal compression. The skin load resultants for a particular

cross-stiffened panel are imposed on an equivalent rhombic plate (same size, shape, and skin

thickness as the inter-stiffener rhombic sections in the panel). Using the critical eigenvalue for the
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rhombic plate and the internal load distribution information, it is straightforward to calculate an

estimate of the buckling load for the whole panel.

As discussed previously, two forms of the rhombic plate buckling solution are available: the

Standard method, which provides an over-estimate to the critical load, and the Kennedy method,

which is believed to provide an underestimate. The difference in results between the two methods

is dependent on the skewness of the plate. For example, rhombic plates under compression have

Standard and Kennedy buckling loads which are virtually identical for the three-cell geometry, be-

cause the interior angle a is approximately 90° and skewing effects are at a minimum. As the plate

is skewed away from the square shape the two solutions diverge, with the Standard solution 27.3%

higher than the Kennedy solution for the eight-cell geometry (13 terms taken in series). The sol-

ution behavior under shear is similar to that for compression; that is, the solutions are nearly

identical when the plate is square but diverge otherwise. For an eight-cell rhombus under shear,

the Standard solution is 12.1% higher than the Kennedy solution. In the previous section, it was

seen that the Standard and Kennedy solutions converged at roughly the same rate with respect to

the exact solution. Therefore, for the remainder of this study, the rhombic buckling load used is the

mean of the values provided by these two methods.

The rhombic/LMM buckling load correlation is examined for both compression and shear. For

compression, the rhombic buckling predictions are rather conservative with respect to the LMM

results, with correlation values ranging from 47% to 61% (Table 9). This conservatism is likely

due primarily to the rhombic analysis ignoring continuity of the buckled skin shape between

neighboring cells. That is, the adjacent skin sections in the stiffened panels provide significant ro-

tational restraint at the edges of a typical rhombus-shaped skin section. Therefore, the LMM

analysis predicts higher panel buckling loads. The shear correlation results are not quite as con-

servative as those for compression, at 65%-74%.
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Table 9. Correlation of Buckling Loads for Rhombic and LMM Models of Cross-Stiffened Panels,

Compression and Shear

Number
of Cells

2
3
4
5
6
7
8

_ R,hombic

Ratio of Critical Eigenvalues _tLM M

Compression Ny

0.47
0.56
0.61
0.60
0.57
0.53
0.51

Shear N,)

0.65
0.73
0.74
0.73
0.66
0.68
0.65
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5.0 Wing Rib Design Study Results

Panel buckling and stiffener crippling analyses for stiffened panels were introduced and tested in

Sections 3 and 4, respectively. This analysis capability, along with the material failure analysis, has

been coupled with a numerical optimization program to create a stiffened panel design package.

This design tool is used to conduct a preliminary design study for minimum-weight aircraft wing

rib panels, the scope of which was outlined in Section 2.3. In Section 5 the results of the design

study are presented and discussed. In Section 5. I, structural efficiencies for geodesic panel designs

under three loading conditions (uniaxial compression, pure shear, combined compression-shear) axe

compared with those for minimum-weight unstiffened and longitudinally stiffened panels. In Sec-

tion 5.2, the results from the design study axe analyzed in more detail. Trends in design variables

and other parameters axe examined to determine what contributes to a structurally efficient panel

design. In Section 5.3, the effects of skin laminate anisotropy and skin section geometry for the

cross-stiffened designs are estimated using the rhombic plate buckling analysis.
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5.1 Optimum Geodesic Panels

The analysis capability described in Sections 3.1 and 3.2 is coupled with a general purpose opti-

mization package, Automated Design Synthesis" (ADS), to create the stiffened panel design code

PANSYS (use and capabilities of the code are summarized in Appendix A). PANSYS is used to

seek minimum-weight wing rib designs subject to constraints on both buckling resistance and ma-

terial strength. Constraints considered in the analysis axe material strength of the skin and stiffeners

(covered in Section 3.1.2), buckling of the fiat plate (Section 3.2.1.2) or stiffened panel assembly

(Section 3.2.1.3), and local crippling of the stiffeners (Section 3.2.2). To briefly review the scope

of the design study, covered in Section 2.3, four panel designs are considered: fiat plate,

longitudinally stiffened panel, diagonally stiffened panel, and cross stiffened panel (see Figure 6 on

page 15). The number of stiffeners in the panel is varied in an incremental fashion, up to a maxi-

mum of eight stiffened cells in the X direction (Figure 8 on page 22). The design variables for the

study are the thickness of the skin laminate, the height of the stiffeners, and the thickness of the

stiffeners. Only one skin laminate is considered, with a quasi-isotropic lamination sequence of

[-45/45/90/0]s, and it is assumed that all plies are of equal thickness. A minimum-gauge lower

bound of 0.040 inch is imposed on the thickness of the skin and stiffeners. Three levels of external

loads are applied in uniaxial compression and pure shear: 100, 1000, and 10000 pounds-force per

inch (lbf/in). A compression-shear combined-load case of up to 30000 lbf/in is also considered.

Numerical design data for all optimum panel designs is documented in Appendix B. Buckled mode

shapes for all panels are shown in Appendix C.

The optimization package ADS allows several choices for each of the three parts (strategy, opti-

mizer, and one-dimensional search) of the solution procedure for the constrained optimization

problem. Numerous other parameters also govern the optimization process itself, through speci-

fying internal tolerances, bounds, convergence criteria, and so on for the algorithm. An informal

study was conducted to test prospective combinations of these parameters for their performance
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onthepresentproblem.The test design was a three cell cross-stiffened panel under compression,

for which several different starting designs were used. Each combination of parameters was rated

on reliability (consistently converging to near-optimum), accuracy (lowest objective function, no

severe constraint violations), and efficiency (least number of iterations). Based on these tests, the

options chosen were Sequential Convex Programming strategy, Method of Feasible Directions

optimizer, and Bounded Polynomial Interpolation one-dimensional search. It is worth noting that

during this study it was discovered that there are a multitude of non-optimal designs where both

panel and stiffener buckling constraints are active. In general, these take the form of a thick plate

and very thin stiffeners. These heavy designs are comparable in weight to an unstiffened plate and

the light stiffeners play only a token role. In the design study this region of the design space was

avoided by using starting designs with thin plates and few problems of this nature were encountered.

A number of parameters governing the structural analysis of the panel must be specified. The pa-

rameters for the shape functions in the stiffener crippling analysis (N:, N,,, NI, , N,_, N_, , and

NI,) were all set to 5. This value appears to give good results and yet the analysis is still very fast.

For the Lagrange multiplier method [LMM] stiffened panel buckling analysis, the parameters gov-

erning the analysis are number of constraint points K per stiffener and the number of skin deflection

function terms M,N in the X, Y directions. The value of K was varied such that the inter-point

distance remained approximately constant over the range of panel geometries and numbers of cells.

Only odd numbers of points were used as it is most effective to have a point at the center of the

stiffener. For cross-stiffened panels, the center points also force displacements of the crossing

stiffeners to match. The process of choosing M and N was discussed in Section 4.1.2. An initial

guess is made, depending on number of cells and loading, and the adequacy of the guess ascertained

after a design has been found by perturbing each parameter. The computational cost of the

buckling analysis is almost entirely dependent on the dimension (M*N), so every effort was made

to keep the size of this number reasonable. To summarize, several guidelines were followed in

making and evaluating the design runs:
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1. Number of constraint points chosen for consistent inter-point distance and good matching of

skin-stiffener displacements.

2. Sufficient number of skin deflection terms used in the analysis so that panel response would

not be artificially stiffened excessively.

3. Ensure that design converged sufficiently well that constraints also well converged (i.e. active,

if it appears that they should be active) but not excessively violated.

The results from the design runs are now presented for the three loading configurations, in the form

of structural efficiency curves for the various geometries. In this study "structural efficiency" is de-

freed as minimum panel mass for a given load carrying capability.

5.1.1 Compression Loading

Panel structural efficiency versus the number of stiffened cells, for three levels of compressive load,

is shown in Figure 31. In this figure, dotted lines represent 100 lbf/in designs, dashed lines 1000

lbf/in, and solid lines 10000 lbf/in. Individual designs are indicated by ftUed symbols for longitudi-

nal (circle), diagonal (square), or cross (triangle) stiffened panels. Note that a single cell config-

uration is not defined for longitudinal stiffeners. Also note that comparison of the longitudinal,

diagonal, and cross-stiffened panel geometries on a number-of-cells basis is somewhat dependent

on how the unit cell is defined for each configuration. The fiat plate design (star) is, of course, in-

dependent of the number of cells, and is shown by a horizontal line for reference purposes. As the

number of cells, and consequently the number of stiffeners, increases there is a clear downward

trend to the panel mass for all stiffened geometries, particularly for the heaviest loads. The mini-

mum panel mass is achieved at all load levels, and for all geometries, by using eight stiffened cells.

Although a minimum has not yet been reached, the curves are levelling off (at least for lighter loads)

so that further mass reduction due to increasing the number of cells may be modest. The diagonal

and cross geodesically stiffened panels are lighter than the longitudinally stiffened panel at all load
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levels,although their structural efficiency advantage over the latter is reduced as the number of cells

increases. At the 100 and 1000 lbf/in loads, there is little difference in mass between the diagonal

and cross-stiffened panels. At I0000 Ibf/in the diagonal stiffened panel is superior to the cross panel

from 3 to 6 cells, but there is little difference between them after that. For eight-cell panels the di-

agonal geometry is lightest of all, weighing just 31%, 34%, and 38% of a flat plate for the 100, 1000,

and 10000 lbf/in loads, respectively.

5.1.2 Shear Loading

A study analogous to that for compressed panels is performed for panels under shear. Because the

skin laminate is assumed to be specially orthotropic (DI6 and Da6are set to zero) for this study, the

results do not depend on the direction of applied shear. For equal load magnitudes, the shear panel

designs shown in Figure 32 are lighter than the compressed panels in Figure 31 (note ordinate axis

scales are the same), particularly for a fewer number of cells. Under combined compression-shear

loads, then, it would appear that the design would probably be dominated by applied compression.

The minimum-weight shear configuration is still achieved, in most cases, by using the maximum

number of cells. The lightest designs for the 100 and 1000 lbf/in load cases are eight cell cross-

stiffened panels, which weigh 45% and 48%, respectively, of equivalent flat plates. At the lowest

load intensity, the cross and diagonal stiffened panels are both lighter than the longitudinally stiff-

ened panel. As the load is increased to 1000 lbf/in the longitudinally stiffened panel becomes lighter

than the diagonally stiffened panel for eight cells only, and at 10000 lbf/in it is lighter for 3 or more

ceils. Longitudinally stiffened panels represent a special case here, however; in the present load

analysis, it is assumed that longitudinal stiffeners have no axial load whatsoever when the panel is

under pure shear. This allows them to be very thin (always at the minimum-gauge bound) and tall,

which provides efficient stiffening. This configuration is not realistic for most applications as a

small amount of compression applied to the panel would cause the stiffeners to cripple.
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The designs considered to this point have not had the material failure constraints active. For 10000

lbf/in shear loading, however, the skin material failure constraint becomes active for the seven and

eight-cell longitudinally and cross-stiffened panels. (The material failure constraint is slightly vio-

lated for the eight-ceLl diagonally stiffened panel as well, but does not affect the design signiticantly).

When active, this constraint forces the skin to become thicker, imposing a weight penalty on the

design. The cross-stiffened panel appears to be most sensitive to changes in skin thickness, as

demonstrated by the immediate reversal in the decreasing-weight trend when the skin material fail-

ure constraint becomes active. Therefore, the tightest completely feasible design (feasible designs

shown by sohd markers in Figure 32) for 10000 lbf/in shear is the six cell cross-stiffened panel,

which weighs 59% of the flat plate. When the material failure constraint is active the critical mode

is transverse tension failure of the 45 ° plies in the panel skin. Designs governed by this mode are

generally conservative as the transverse tension mode merely indicates the onset of matrix cracking.

A laminate will usually carry considerably larger loads before catastrophic failure (defined as fiber

breakage) occurs. For this reason, shear panels redesigned with the skin material failure constraint

removed are also shown in Figure 32, indicated by hollow markers. Both the longitudinally and

cross-stiffened panels regain their former decreasing-weight trend and the cross-stiffened panel re-

mains the lightest configuration for these designs as well.

5.1.3 Combined Compression-Shear Loading

Finally, a compression-shear combined-load case is considered. In both the previous uniaxial

compression and pure shear loading cases, the trend towards minimum panel weight generally in-

dicated using the maximum number of stiffened cells. Therefore, only an eight cell panel is studied

under combined loads. The panel is subjected to equal magnitudes of shear and uniaxial com-

pression, ranging from 100 lbf/in to 30000 lbf/in. The cross-stiffened panel is tightest throughout

this range of loading, weighing just 33% of the fiat plate at the lightest load and increasing to 64%

of the corresponding plate at the heaviest load (Figure 33). The longitudinally and diagonally
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stiffened panels are very similar in weight throughout the loading range, with the diagonally stiffened

panel showing a small advantage at light loads but the converse true at heavy loads. As suggested

in the previous section, the design of a combined-load panel appears to be most sensitive to the

compressive loads. For example, the masses of panels designed for I000 Ibf/in compression (from

Section 5.1.1) are compared with those designed for I000 Ibf/in compression=shear. The addition

of I000 Ibf/in shear causes the masses of the fiat plate, longitudinally stiffened panel, and cross-

stiffened panel to rise by only 0.71%, 11.8%, and 9.0%, respectively. The diagonally stiffened panel

is the most sensitive to additional shear, with an increase in mass of 28.6%.

For panels under pure shear, in Section 5.1.2, the skin material failure constraint became active at

I0000 Ibf/in. Under combined loads, however, constraint activation is delayed until the 30000 Ibf/in

load level. For the longitudinally and diagonally stiffened designs, only the skin material strength

constraint becomes active. The cross-stiffened panel, however, has both the skin and stiffener ma-

terial strength constraints active. As discussed previously, violation of the skin material strength

constraint in the transverse tension or compression modes may be tolerable. However, for the

combined load case, all three stiffened panels would exceed skin strain allowables in other, more

critical modes as well. Of course, violation of the crossed stiffener material strength constraint

would also be considered catastrophic. Therefore, no violation of material strength constraints was

allowed for the combined=load designs. Making the stiffeners larger in order to satisfy the stiffener

failure constraint reduced the weight advantage of the cross-stiffened design between the I0000 and

30000 load levels, but it remained the lightest nonetheless.

5.2 Interpretation of Design Study Results

In Section 5.1, optimum panel designs were presented for a flat plate, as well as longitudinal, diag-

onal, and cross-stiffened panels. Presenting the design data in terms of panel mass for a given
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load-carryingcapabih'typrovidesan efficientmeans of choosing an appropriatepanel designfor a

given loading regime. However, it is instructive to examine other aspects of the designs in wearer

detail. To this end, trends in geometric design variables and trends in distribution of load and mass

between the skin and stiffeners are examined in this section.

The design variables in the present study include stiffener height, stiffener thickness, and skin lam-

inate thickness. The trends in each of these parameters is examined in order to identify trends over

the range of optimum designs. Two other factors, the distribution of panel mass and distribution

of external load between the skin and stiffeners, are also considered. In this discussion, only the

geodesically stiffened configurations (diagonal and cross) are considered. The longitudinally stiff=

ened panel results are excluded for reasons to be explained shortly. For each parameter under

consideration, behavior under uniaxial compression is considered first, followed by that under pure

shear. The ordinate axis scales for the plots of each parameter are identical for ease in making

comparisons.

5.2.1 Convergence Behavior

The resultsfor longitudinallystiffenedpanelswere not considered suitableto includein the pa-

rameter study for two reasons.First,for the compression-loaded panels,the stiffenersarc often

thickerand/or shorterthan necessarydue to poor convergence of the stiffenercripplingconstraint.

Second, the longitudinalstiffenersforthe shear-loadedpanelsare unrealisticallythin as they carry

no axialload.The problem for compression-loaded panels willbc discussedfirst.For optimum

structuralefficiencya stiffenershould have the highestaspectratio(aspectratioisstiffenerheight

over stiffenerthickness)possible,within the limitimposed by stiffenercrippling.In optimized de-

signs,the only validreasons for the stiffenercripplingconstraintto be inactivearc having the

stiffenerthicknessdesignvariableatitslower bound (observedforthe lightlyloaded panels)or the

stiffenermaterialfailureconstraintactive(which only occurred for one design under maximum
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combined loads). If the stiffener crippling constraint is not active, this implies that the same mo-

ment of inertia could be achieved by a higher, thinner, and lighter stiffener. For the longitudinally

stiffened panels under compression, however, it was difficult to get good convergence on the

stiffener buckling constraint. Consequently, the stiffener height and thickness design variables are

not consistent design to design. This phenomenon can be explained by considering the influence

of the stiffener rigidity on the buckling load of the stiffened panel. In Section 4.1.2, an exercise was

performed for a cross-stiffened panel where the panel critical load was observed as a function of

stiffener aspect ratio (see Figure 23 on page 112). In that example the critical load approached the

maximum asymptotically; although the curve levels off appreciably, there still exists a finite slope.

The buckling load for the longitudinally stiffened panel, however, reaches a certain level and then

remains constant, irrespective of further increases in the stiffene_ aspect ratio. When the longitudi-

nal stiffeners reach a threshold flexural rigidity, the skin of the longitudinally stiffened panel buckles

in a series of inter-stiffener waves in the X direction with the stiffeners located along nodal lines.

Since the stiffeners do not deflect and the effect of stiffener torsion is ignored in this analysis, as long

as the stiffener flexural rigidity is above the threshold level required to enforce a nodal line, changes

in stiffener rigidity do not influence the panel buckling load. Timoshenko and Gere _ confirm this

phenomenon for buckling of isotropic plates with longitudinal stiffeners, noting that the dimensions

of the stiffeners should in fact be chosen such that they will "just remain straight during buckling

of the plate." For the present approach, however, having the panel buckling load independent of

the stiffener dimensions in certain areas of the design space appears to cause problems for the op-

timizer. Even though the panel buckling load is independent of the stiffener dimensions in this re-

gion, the optimizer should still attempt to reduce stiffener size to decrease the mass. However, the

stiffeners make up at most 15.5% (and often less than 10%) of the total longitudinally-stiffened

panel mass. Therefore, the incentive for the optimizer to reduce the stiffener mass is not that great.

The two problems of "threshold" buckling and low stiffener mass appear to account for the poor

convergence of the stiffener design variables for the compressed, longitudinally stiffened panels.
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Thebehaviorof the longitudinally stiffened panels under shear, as mentioned in Section 5.1.2,

presents a problem different from that for those under compression. Assumptions made in the load

distribution analysis cause the stiffeners to have no axial load when the panel is under pure shear.

The stiffener crippling constraint then becomes meaningless and the stiffeners will always have the

minimum allowable thickness. This leads to designs which may be impractical, and points to one

of the dangers of optimized structures, that of off-design performance. This topic has led Stroud _'

to state that "structures tailored for a specific load condition can perform poorly in an off-design

condition. Since composite materials provide additional design variables for more refined tailoring,

optimized composite structures can be especially susceptible to this problem." As an example of

this, consider an eight cell longitudinally stiffened panel which was designed under a pure shear load.

Although this panel will carry 1000 lbf/in in shear, the thin stiffeners cripple when an external

compressive load of only 30 lbf/in is applied to the panel! _Therefore, since the shear-loaded

longitudinally stiffened panels may have unrealistically large stiffener aspect ratios, the parameter

trends for these panels are not considered.

The optimization process for the geodesically stiffened panels was better behaved than that for the

longitudinally stiffened cases, but convergence problems were still experienced. The stiffener

buckling constraint would often not converge to the same degree as the panel buckling constraint.

The cause of this would appear to be the stiffeners making up less than 30% of the totad panel mass.

Although errors in the stiffener dimensions will not have a large effect on the structural efficiency,

design variable trends in the figures may not always be smooth. For some geometries and loadings,

problems were also experienced in achieving good convergence for the panel buckling constraint.

For some designs it is believed that the critical loads for different buckling modes may be very close

to each other. For example, the mode shapes for the optimally designed eight cell cross-giffened

compression designs are shown in Figure 34. The mode for 100 lbf/in has eight cell-width half-

waves, which switches to an inter-stiffener mode for the 1000 lbf/in design, and back to the first

mode for the heaviest load design. If mode switching behavior were to occur as design variables

were perturbed in the design run, inconsistent gradient information and lack of progress on the
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design would result. Imposing an additional constraint often helped convergence of the problem

considerably. For example, in cases where the skin material failure constraint was active, the designs

often converged to a very tight tolerance and did so within a small number of iterations.

In studying the parameter trends, it should be noted that both the panel and stiffener buckling an-

alyses are highly nonlinear functions of the panel design variables. The analyses are more sensitive

to some parameters than others, resulting in inconsistent degrees of convergence in the design var-

iables. The skin thickness is generally the best-converged design variable, as the skin accounts for

the maiority of the panel mass. The panel buckling load is also highly sensitive to skin thickness,

with the flexural rigidity of the skin roughly proportional to the cube of the skin thickness. The

stiffener height is the next-best converged parameter, as the stiffener flexural rigidity is a function

of the stiffener height cubed. Finally, the stiffener thickness is likely the least-well converged pa-

rameter. The stiffener flexural rigidity is only a linear function of the stiffener thickness, so the panel

buckling load is not overly sensitive to it. Although the stiffener crippling analysis itself is highly

dependent on the thickness, it has been noted that the optimization process in turn is not very

sensitive to satisfaction of the crippling constraint. Another point to note is that extra care was

taken to achieve the best convergence possible for the axially-loaded cross-stiffened panels. This

required multiple runs for many of the designs, with changes being made in the starting designs,

optimizer parameters, and analysis parameters to improve convergence. Therefore, the curves for

the compressed cross-stiffened panels may tend to be smoother than those for the other cases.

5.2.2 Skin Thickness Trends

Trends in the skin thickness parameter are first examined for cross and diagonally stiffened panels

under uniaxial compression. The total (i.e. not ply) thickness for the skin of the cross-stiffened

(Figure 35, top plot) and diagonally stiffened (Figure 35, bottom plot) panels is shown as a func-

tion of the number of stiffened cells per panel. For both panels, the skin thicknesses decrease
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smoothly as the number of cells is increased and all arc above the minimum thickness bound of

0.040 inch. For a single diagonally stiffened cell the skin is very thick, probably due to the large

inter-stiffener skin areas (see Figure 8 on page 22). The skin for the cross-stiffened single cell de-

sign, on the other hand, is not appreciably thicker than that for two cells. The triangular shapes

of the skin sections in the single cell design may account for this. The percentage reduction in skin

thickness as the number of cells increases is larger for more heavily loaded panels. The eight cell

cross-stiffened skin thicknesses are 48%, 44%, and 39% of the single cell thicknesses for 100, 1000,

and 10000 lbf/in, respectively. Values for the diagonally stiffened counterparts arc 34%, 31%, and

30%. For the eight cell designs, the diagonally stiffened skins are slightly thinner than those for the

cross-stiffened panels, being 92%, 89%, and 99% of the latter.

In the case of pure shear loading the skin thicknesses, with several exceptions, also display a

downward trend as the number of cells is increased, as shown in Figure 36. The first deviation

from this trend is a slight increase in skin thickness between one and two light and medium loaded

cross-stiffened cells. This may be due to the all-triangular single cell design restraining the skin more

effectively than the two cell design with a central rhombus. The second exception is the dramatic

increase in skin thickness for the seven and eight cell cross-stiffened panel, when the skin material

failure constraint becomes active. The skin material failure constraint also becomes active for the

eight cell diagonally stiffened panel, but the increase in skin thickness is so small as to be indis-

cernible. The final exception is for the diagonally stiffened panel, in the area of five to six cells.

This appears to be due to a change in the buckling mode of the panel. Since the change is more

pronounced in other parameter trends, a discussion of this phenomenon will be delayed. Overall,

the cross-stiffened skin tends to be thinner than the diagonally-stiffened skin for a small number

of cells, but the two become closer as the number of cells increases. Except for the atypical trends

in the I0000 lbf/in shear-loaded panels, the skins for the shear-loaded panels tend to be thinner than

skins for compression-loaded panels. The difference is most apparent for a small number of cells,

and decreases to almost nil for many cells.
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5.2.3 Stiffener Height Trends

The trends in stiffener height, again as a function of the number of cells, are shown in Figure 37

for axial compression. Stiffener heights decrease as the number of ceils are increased, with the re-

duction more pronounced for the cross-stiffened panels. The large drop in height between one and

two cells for both geometries is due to a significant decrease in stiffener length; the cross stiffener

length decreases 42%, while the diagonal stiffeners decrease 30%. The decrease in length between

two and three cells is only 21% and 10%, respectively, and the change becomes progressively

smaller as more cells are added. The relationship between stiffener lengths and number of stiffened

cells is shown in Figure 38. Two lengths are shown for cross stiffeners; overall length and effective

length. The overall length is important for panel buckling considerations as this is the length of

stiffener between fixed supports. The effective cross stiffener length (one-half of the overall length)

is the length assumed for the stiffener crippling analysis. The overall and effective lengths are iden-

tical for the diagonal stiffeners. Returning to the discussion of Figure 37, adding ceils causes the

stiffeners to both decrease in length and, of course, increase in number. Therefore, each stiffener

does not have to be as rigid to stabilize the skin and can therefore be lower in height. At eight cells,

the cross stiffeners are 72%, 79%, and 92% of the diagonal stiffeners' height, for 100, 1000, and

10000 lbf/in. As the loads increase, it appears that the cross and diagonal stiffeners are tending to

a similar height.

The plots of stiffener height versus number of cells for shear loading axe shown in Figure 39. Again

the trend, with some exceptions, is to lower-height stiffeners as the number of cells increases. The

100 and 1000 lbf/in cross-stiffened panels show a slight increase in stiffener height between seven

and eight cells. For 1000 lbf/in, this may be due to a change in buckling mode from inter-stiffener

buckling at six cells, to trans-stiffener mode for seven cells, and back to an inter-stiffener mode at

eight ceils (Figure 40). Both panel and stiffener buckling constraints were poorly converged for the

seven cell case, which may have prompted (or resulted from) the change in mode shape. This

demonstrates that the buckling modes can be very sensitive to panel geometry and design variables.
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Stiffener heights for the 10000 lbf/in panel are fairly constant for more than about four cells, except

when the material failure constraint becomes active. When this happens, the skin thickness increa_s

considerably (see Figure 36), allowing the stiffeners to be reduced in size. Stiffener heights for

shear-loaded panels are significantly smaller in comparison to those for compression-load_ panels.

This is more apparent for a small number of cells and the difference is reduced for a larger number

ofcells.

The diagonal stiffener height trends for pure shear loading are somewhat more unusual. At all three

load levels, the stiffeners increase in height slightly between one and two cells. Above two cells, the

stiffener height for the 100 and 1000 lbf/in panels remains nearly constant. The stiffener height for

the 10000 lbf/in panels actually increases up to four cells, then dramatically drops off to a height

below even that for 1000 Ibf/in, for seven and eight cells. It is I_elieved that there is a fundamental

change in stiffening modes between the designs for a few cells, and that for more than about four

cells. In all designs, the stiffeners with tensile loads (angled upwards and to the left) enforce lines

of zero-displacement in the skin. In the designs with a few ceils, the compressed stiffeners are fairly

rigid to limit out-of-plane displacement along this line and make the buckling mode largely inter-

stiffener in nature. (Figure 41). As the number of cells increase, however, it is more efficient to

allow the compressed stiffeners to deflect to a considerable degree. The buckling mode then as-

sumes almost a full half-wave shape between the tensile-loaded stiffeners with the load carried es-

sentially by membrane action in the skin.

5.2.4 Stiffener Thickness Trends

Trends in the stiffener thickness for compression are shown in Figure 42. For the lowest load in-

tensity of 100 lbf/in, the stiffener thicknesses for both the cross and diagonally stiffened panels are

at the minimum-gauge limit of 0.040 inch for all designs. At higher load levels, cross stiffener

thicknesses decrease initially but then change little. The diagonal stiffener thicknesses show the same
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Figure 41. Change in Buckling Modes for Optimum Diagonally Stiffened Panels, 100tH) Ibf/in
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initial decrease, but then increase again. The initial decrease is explained by the rapid drop in

stiffener length as cells are first added. As explained in the previous section, when the panels have

only a few cells the stiffeners are long and therefore high to have sufficient rigidity. This requires that

the stiffeners also be thick to prevent crippling. After the rapid initial drop in stiffener length, it soon

changes very slowly, resulting in relatively constant stiffener thicknesses. The slight increase in cross

stiffener thickness for eight cells may be due to a change in buckling mode (inter-stiffener to trans-

stiffener) for the 10000 lbf/in panel (see Figure 34) and poor convergence of the stiffener crippling

constraint for the 1000 lbf/in panel. The increase in diagonal stiffener thickness around five cells,

for the 1000 and 10000 Ibf/in cases, appears to be due to a change in buckling mode. For the 1000

lbf/in panel, the mode changes from solely inter-stiffener buckling for five cells to a mode with

buckling across the center pair of stiffeners at six cells. For the 10000 lbf/in panel, the mode is

inter-stiffener for four cells, five full half-waves for five cells, and trans-stiffener buckling for six or

more cells (Figure 43). Overall, the cross stiffeners tend to be thinner, perhaps because their ef-

fective length (distance between supports) for the crippling analysis can be as little as one-half of

diagonal stiffener length.

The plots of stiffener thicknesses for shear loading are shown in Figure 44. For 100 lbf/in loads,

cross stiffeners are at the minimum thickness bound for three or more cells and diagonal stiffeners

are at the bound for seven and eight cells. The cross stiffeners display a more-or-less constant trend

towards decreasing stiffener thickness. The flattening-off behavior above four cells at 10000 lbf/in

appears to be due to a change from an inter-stiffener mode at four cells to a mode with a single

elongated wave between the tensile-loaded stiffeners for five and above (including seven and eight

cell material-constraint-violation cases). The six cell mode is not a clear inter-stiffener or trans-

stiffener mode, but more a mixture of the two. The diagonal stiffeners show, in most cases, a

decreasing-thickness trend. The thicknesses for the 10000 lbf/in panels show a dramatic dropout

above four cells, similar to what was seen for the stiffener heights in Figure 39. Again, the design

appears to make no attempt to limit deflection of the compression-loaded stiffeners and merely

makes them heavy enough not to cripple while the tensile-loaded stiffeners enforce a nodal line.
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Figure 43. Change in Buckling Modes for Optimum Diagonally Stiffened Panels, 10000 Ibf/in Com-
pression: A) 4 Cells B) 5 Cells C) 6 Cells
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5.2.5 Stiffener Aspect Ratio Trends

The stiffener aspect ratio (stiffener height/stiffener thickness) trends are shown in Figure 45. The

aspect ratio consistently decreases as the number of cells increases, for both cross and diagonally

stiffened panels. The highest aspect ratios occur for the lightly-loaded panels, while the stiffeners

tend towards a more square cross-section as the loads increase. For the 10000 and even 1000 lbf/in

panels, the large number of stiffeners with aspect ratios below 10 indicates the need for using a

higher-order theory for the buckling of the stiffeners.

The plots of stiffener aspect ratio versus number of cells for pure shear loading are shown in

Figure 46. Note that the aspect ratio is again highest for the lightly loaded panels and lowest for

the heavily loaded panels. The aspect ratios for shear panels do not change as markedly as those

for compression-loaded panels. The cross stiffeners do show a decreasing trend as the number of

cells is increased, especially for heavier loads. The aspect ratios for diagonal stiffeners, however, are

nearly constant and in fact increase slightly as the number of cells is increased. Note that the aspect

ratios are in general much lower for the shear panel stiffeners than the stiffeners in the compressed

panels. All stiffeners for panels loaded with 1000 lbf/in shear have aspect ratios below 10, and those

with 10000 lbf/in are all below 5. These aspect ratios do not fall within the ranges normally asso-

dated with the use of classical plate theory.

5.2.6 Stiffener Load and Mass Fraction Trends

A parameter termed stiffener load fraction is displayed in Figure 47. The load fraction is defined

as the portion of the total applied load carried by the stiffeners; the remainder of the load is carried

by the skin. The load fraction carried by the stiffeners consistently increases as the number of cells

increases, for both stiffened geometries. Overall, the diagonally stiffened panels have a higher

stiffener load fraction than the cross-stiffened panels. For example, for the load level of 100 lbf/in
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eight ceil panels have 35% of the applied load carried by diagonal stiffeners, but only 23% carried

by cross stiffeners. The highest level reached is that for the diagonally stiffened panel under 10000

lbf/in, with the stiffeners carrying 60% of the applied load.

The plots of stiffener load fraction for shear-loaded geodesic panels are shown in Figure 48. The

portion of the load carded by the stiffeners is considerably lower than that for compression-loaded

panels. The highest load fraction for the cross-stiffened geometry is 24% for a six cell panel under

10000 lbf/in and that for the diagonally stiffened geometry is 16.2% for a four cell panel under

10000 lbf/in. For 100 and 1000 lbf/in loaded cross and diagonally stiffened panels, the portion of

the load carried by the stiffeners stays relatively constant. For 10000 lbf/in cross-stiffened panels,

the load fraction rises between one and three cells, and then stays relatively constant (including

seven and eight material-constraint-violated cells). When the skin material failure constraint be-

comes active, the skin is forced to become thicker, and the portion of the load carried by the

stiffeners drops. For the 10000 lbf/in diagonally stiffened panels, it was shown earlier that the

stiffener height and thickness decreased dramatically above four cells. This is revealed in the drop

in stiffener load fraction for more than four cells. At eight cells, the stiffeners are carrying only 4.3%

of the applied shear load.

The fraction of the total panel mass made up by the stiffeners, called the stiffener mass fraction, is

examined in Figure 49 for compression. Except for an initial drop between one and two cells, the

trend is an increase in stiffener mass fraction as the number of cells increases. The stiffeners make

up a larger fraction of the panel mass for a single cell because the stiffeners are long and thus must

be very robust in order to provide adequate reinforcement. The effect is more pronounced for the

cross stiffeners as they are considerably longer (84.8 in) than the diagonal stiffeners (48.8 in) for the

single cell. The difference in length between the two narrows considerably, even for just two cells

(cross, 48.8 in; diagonal, 34.4 in), which is reflected in the mass fractions for the two geometries

becoming progressively closer.
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Stiffener mass fractions for pure shear loading are shown in Figure 50. The cross-stiffened panels

show a small initial decrease in stiffener mass fraction, between one and two cells, then a consistent

increasing trend (including the material-constraint violation points). Again, as the material failure

constraint becomes active, the skin becomes much thicker so the stiffener mass fraction drops off

for seven and eight cell fully feasible designs. The cross-stiffened panel under heavy loads has a

thinner skin than the diagonally stiffened panel and yet carries considerably more load with the skin

(24% versus 7.3% for 6 cells, 10000 lbf/in shear). Therefore, the cross-stiffened panel is affected

more than the diagonally stiffened panel by the skin material failure constraint becoming active.

The mass fraction curves for the I00 and 1000 lbf/in loaded diagonally stiffened panels show a

constant upward trend over the whole range of cells. The 10000 lbf/in curve levels off between four

and five cells, drops down considerably to six, then begins to increase again. Even though the

stiffener height and stiffener thickness decrease constantly from four cells and higher (see

Figure 39 and Figure 44), the mass fraction is mainly dependent on the skin thickness as it com-

prises approximately 80% of the panel mass. The skin thickness rises slightly between five and six

cells (Figure 36) and then falls decreases for seven and eight cells, accounting for the large changes

in stiffener mass fraction.

5.3 Effects of Skin Laminate Geometry and Anisotropy

As mentioned in previous sections, a simplified structural analysis approach sometimes taken is to

model a stiffened panel as an assemblage of plates under in-plane loads. Although this approach is

approximate, it can be useful for preliminary design study purposes. In Section 3.2.1.3, the

Lagrange multiplier method [LMM] analysis was introduced to predict buckling of geodesically

stiffened panels. In the development, it was noted that the skin is assumed to be specially

orthotropic, that is the effect of D_sand Dz terms is ignored. However, most practical skin laminates

will in fact have nonzero bending-twisting coupling terms. For this reason additional insight into
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the effect of these terms is sought. Therefore, one purpose in considering the stability of anisotropic

rhombic plates is to gauge the effect of anisotropic effects which have been neglected in the LMM

panel buckling analysis. An additional motivation for the study of rhombic plates is to isolate the

effect of changing the plate shape. In the optimization of a complete stiffened panel, changes in

design performance are a complex interaction of changes in multiple design variables. Therefore,

examining the trends for buckling of various-shaped rhombic plates may be indicative of trends for

similar skin sections in a stiffened panel. If so, it is possible that the rhombic analysis may be used

to determine an optimum laminate configuration without analyzing the entire stiffened panel.

However, before the rhombic plate studies are undertaken, the applicability of the rhombic plate

analysis to the local buckling of a stiffened panel is examined once more.

In Section 4.2.2, a brief study examined the correlation between the LMM solution for cross-

stiffened panels and the rhombic plate solution for equivalent rhombus-shaped skin sections. The

panels for that study, however, had very rigid stiffeners such that the budding deformation was

virtually all inter-stiffener skin buckling. The question arises as to whether optimized panel designs

have stiffeners sufficiently rigid to enforce localized skin buckling (see, for example, Panel C in

Figure 22 on page 111 for compression, or Panel C in Figure 24 on page 114 for shear), or whether

they are lightly stiffened and buckle in a more generalized, trans-stiffener manner (as in Panels A

of Figure 22 or Figure 24), or perhaps a combination of the two. The use of the rhombic analogy

implicitly assumes that the critical mode is one of local, inter-stiffener buckling of the skin. If the

critical mode is more global, however, use of the rhombic analogy is not appropriate.

To address the question of rhombic plate applicability to stiffened panels, optimum cross-stiffened

panel designs from Section 5.1 are examined. The stiffener aspect ratio for each optimum design is

increased by a factor of four, thereby increasing the stiffeners' flexural rigidity by a factor of about

15. Since the stiffener cross=sectional areas remain the same, the load distribution between the skin

and stiffeners is also unchanged. Therefore, any increase in panel buckling load is due to the increase

in stiffener moment of inertia only. The relationship between compressive buckling loads for panels

with optimized and rigid stiffeners, for different numbers of cells, is displayed in Table I0. Panels
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d

designed under light compressive loads are the closest to being "rigidly stiffened" designs, as the

buckling loads only differ by 3% to 4%. The panels designed under heavy loads are not as close

to being rigidly stiffened, with the lowest correlation being 88%. This indicates that optimum de-

signs are not always close to a local-skin-buckling-only condition. In fact, for most optimum de-

signs the buckling mode is a combination of both global and local buckling. The two designs

marked with a star, even though the eigenvalue agreement is close to 100%, buckle in a manner

which does not result in rhombus-shaped skin sections. Their mode shapes are shown as Panels A

and C in Figure 34 on page 142. Clearly, the rhombic analogy is not appropriate for these panels.

Table 10. Correlationof Buckling Loads for Cross-Stiffened Panels with Optimumand RigidStiffeners,
Compression

_'Op#mum

Ratio of Critical Eigenvalues 2R,8,d

Number N = 100 NL= 1000 N, = 10000
of Cells (fbf/in) (_bf/in) (lbf/in)

2
3
4
5
6
7
8

0.96
0.97
0.97
0.97
0.96
0.96
0.96 *

0.91
0.94
0.94
0.94
0.95
0.94
0.97

0.88
0.90
0.92
0.93
0.91
0.93
0.97 *

The relationship between optimum and rigid stiffener designs is also examined for shear loading, in

Table 11. The worst correlation value of 48% points out that some panel designs may be very far

away from the idealized rigid stiffener configuration. Again, the designs marked with a star buckle

in a manner which does not result in rhombic skin sections. These panels have parallelogram-

shaped buckled sections between the tension-loaded stiffeners, while the compression-loaded

stiffeners deflect with the skin (similar to Panel B in Figure 40 on page 151). These results indicate

that caution must be exercised in using discrete plate buckling results to estimate critical loads for

stiffened components. However, when panels are reinforced by adequately rigid stiffeners, it may

still be reasonable to estimate the effects of parameters such as anisotropy or laminate geometry

using the rhombic analogy.
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Table 1 i. Correlation of Buckling Loads for Cross-Stiffened Panels with Optimum and Rigid Stiffeners,
Shear

Ratio of Critical Eigenvalues
_ Optimum

_ Ri&,d

Number N,. = 100 Nx. = 1000 N,,= 10000
of Cells (lgf/in) (ibf/in) (lbf/in)

0.96
0.98
0.97
0.95
0.94
0.94
0.94

0.94
0.95
0.95
0.94
0.91
0.91 *
0.93

0.93
0.96
0.95
0.94 *
0.91
0.70 *
0.48 *

The buckling behavior of rhombic plates as a function of plate skewness is now examined for

compression, shear, and combined compression-shear loads. Critical loads for the rhombic plates

are expressed in the form of the buckling parameter

N,,#
2cR - _

N#3D22
a, fl = x,y

m

where N._ are the specified load quantities, N,p are the true critical loads, and D_a is the plate

bending stiffness in the Y direction. Including the latter factor renders the results independent of

plate thickness. As the rhombic plates represent the rhombus-shaped skin sections of the cross-

stiffened panels, appropriate values for the rhombus interior angle and side length (shown in

Table 8 on page 125) are specified for a given number of cells. As discussed in Sections 3.2.2 and

4.2, the present formulation allows two forms to the solution: the Standard method, which provides

an over-estimate to the critical load, and the Kennedy method, which is believed to provide an

underestimate. Unless specified otherwise, the rhombic buckling load used in this section is the

mean of the values predicted by these two methods, and 13 terms are taken in the deflection series.

Solutions for both fully anisotropic and specially orthotropic plates are easily found by either in-

cluding Dr6 and D2s terms in the analysis or setting them to zero, respectively. The latter condition
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of special orthotropy is assumed in the LMM panel buckling analysis, and so represents the baseline

for determining anisotropy effects.

The behavior of a rhombic plate is ftrst examined under compression. Although the stiffened panels

in this study have uniaxial compressive applied loads, the skin of the panel is under biaxial com-

pression due to the X direction zero-displacement boundary condition and the Poisson effect. The

compression results for orthotropic and anisotropic plates under the equivalent biaxial compressive

load are shown in Figure 51. Looking ftrst at the orthotropic solution (denoted by solid line), it

is clear that skewing the rhombic plate (i.e. equivalent to increasing the number of cells) increases

the critical load considerably. The buckling load for the eight-cell equivalent plate is 8.0 times

higher than that for the two-cell plate. This could account, in part, for the large reduction in skin

thickness displayed by the compressed, cross-stiffened panels when the number of cells was in-

creased (see Chart A of Figure 35 on page 144). Comparing the orthotropic (solid line) and

anisotropic (dashed line) solutions in Figure 51, material anisotropy causes an almost negligible

drop in load. The anisotropic solution is 0.05% below the orthotropic solution for two cells, in-

creasing to a stiU-small 0.6% drop at eight cells.

The rhombic buckling results for pure shear loading are shown in Figure 52. Considering the

orthotropic solution (solid line), the skewing effect increases the buckling load of the eight-cell plate

5.5 times over the two-cell geometry. Since an eight-fold increase was seen for compression, it ap-

pears that skewing does not influence the critical load for shear as much as it does for compression.

Indeed, the skin thickness reductions for cross-stiffened designs did not decrease as markedly for

shear (Chart A of Figure 36 on page 146) as for compression (Chart A, Figure 35). In

Figure 52, it is important to note that the solution for orthotropic plates is independent of the di-

rection of applied shear. Including anisotropy in the shear analysis of the rhombic (and other)

plates not only alters the predicted critical load, but also makes the solution sensitive to the direc-

tion of shear. For the present ply orientation and load direction conventions (see Figure 5 on page

14), the plates buckle at lower levels of positive shear (lower, dotted curve in Figure 52) than neg-

ative shear (upper, dashed curve). Mathematically it is the existence of bending-twisting coupling
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terms D_6 and D_ which account for this behavior. Physically the phenomenon can be explained

by the relative positions of the + 45° and -45 ° plies within the stacking sequence. The maximum

shear buckling load is achieved when the outermost 45° ply is in fiber-direction compression. Ob-

viously this directional dependence is important in the design of the wing fib if it is to see reversed

shear loads. The effect is minimized as the number of plies in the laminate increases and if + 45°

ply pairs are interspersed through the thickness. Unfortunately, many of the optimized designs in

this study have thin skin laminates with only a few plies, which may mean that coupling effects

cannot be reduced significantly. In general, the anisotropic shear buckling loads deviate about

17-18% from the orthotropic solution. Under positive shear, the anisotropic buckling load for the

two-cell plate is 18.0% below the orthotropic buckling load, decreasing slightly to a 17.5% drop

for the eight-cell plate. For negative shear, the corresponding differences are 17.9% and 17.0%, but

the anisotropic values are above the orthotropic.

Buckling of the rhombic plates under equal combined compression and shear loads is considered

in Figure 53. From Figure 51 and Figure 52 it is known that a given rhombic plate will buckle

under a compressive load which is only 30-40% of the critical shear load. Since the plates are more

sensitive to compressive loads, the plate response should be dominated by the amount of com-

pression applied, which in fact is the case. Comparing Figure 53 with Figure 51 clearly indicates

that the addition of shear has virtually no effect on the critical load of the compressed plate. The

increase in critical load due to skewing the plate from the two to the eight-cell geometry is 7.9 times,

which is very close to the value of 8.0 for pure compression. Furthermore, the appreciable

anisotropy effects shown in Figure 52 for pure shear loading are suppressed to a large degree. The

maximum deviation from the orthotropic solution is now only -3.1%, for the eight-cell plate under

positive shear.

One topic related to laminate optimization is now discussed briefly. As noted earlier, optimized

stiffened panels may be restricted to very thin skin laminates. Besides having a limited number of

plies to begin with, opportunities for altering the skin layup may be further restricted by strength,

stiffness, damage tolerance, or other considerations. Since the present skin laminate is quasi-
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is.tropic, it has no preferred in-plane stiffness directions. Therefore, the entire laminate can be ro-

tated without affecting the in-plane elastic response. Rotating the laminate will, however, have

considerable impact on the out-of-plane response. It is well known that the shear-buckling re-

sponse of laminates is dependent on the magnitude of the bending-twisting coupling terms D_6and

D=6,which change with laminate orientation. For rhombic plates it has been demonstrated that the

shear-buckling response of rhombic plates is also dependent on the degree of skewness. Laminate

orientation is examined within the context of rhombic plate shear-buckling to determine the

worst-case error which might be incurred by ignoring anisotropic coupling effects (i.e. assuming that

D_6= D_6= 0) for the present laminate. A second objective is to determine if there are any advan-

tages to be gained through laminate rotation.

Three rhombic plate interior angles a of 90°, 120°, and 150" are considered in the study. The

[-45/45/90/01s laminate is rotated through the range of 0* to 180" by 7.5* increments for each

rhombus; the response for the 180"-360" interval is identical. The anisotropic buckling loads under

positive and negative shear and the orthotropic buckling loads are computed through the range of

laminate orientations. Due to the large number of analyses involved, the Standard analysis with 9

series terms is used for computational economy. The critical loads as a function of laminate orien-

tation are shown in Figure 54 for the three rhombus angles. Note that the ordinate axis scale for

each plate is different, with the critical loads increasing significantly between a = 90* and ec= 150°.

In each plot, the solid line represents the orthotropic buckling load, and the dotted and dashed lines

represent anisotropic solutions for positive and negative shear loads, respectively. Clearly, a design

based on orthotropic results could be appreciably under or over-designed, depending on the loading

and laminate geometry. For each rhombus angle, the point of maximum deviation from the

orthotropic solution is indicated by the double-headed arrow. The maximum deviation between

anisotropic and orthotropic solutions is found to be approximately constant at ± 20% for all three

rhombus angles. Therefore, the deviation is independent of, or a very weak function of, the

rhombus angle (the absolute maximum for each case was not found as the increment in laminate

rotation angle was 7.5°). As a point of interest, the maximum deviation for a [0/60/-60]s quasi-
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isotropic laminate was found to be approximately constant at q-40%. The location of the maxi-

mum deviation does appear to change slightly with changing rhombus angle. It is significant that

the maximum-deviation location is never more than 15° away from the baseline (0 ° rotation) con-

figuration. A second important point is that there exist two laminate orientations (indicated by the

black dots) at which there is no shear directional dependence. This laminate orientation could then

be used to design a component with equal shear-buckling resistance under reversed shear. Clearly,

these cross-over points (particularly the right-hand one) change location with changing rhombus

angle.
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6.0 Concluding Remarks

6.1 Summary

The aim of the present work was to evaluate the geodesic stiffening concept for possible use in

weight-efficient aircraft structures. A wing rib panel similar to that of a large transport aircraft was

chosen as the object of the preliminary design study. The lack of a suitable design code led to the

development of structural analysis methods as part of the research effort. The resulting design code

was used to conduct an optimization study for several wing rib panel geometries under represen-

tative loads. The results of the design study, including structural efficiencies and geometric param-

eter trends, are presented and discussed. Effects of skirt laminate geometry and anisotropy on the

local skirt buckling behavior of a stiffened panel were examined using an analysis for the buckling

of a simply supported rhombic plate.

The wing rib was modeled as a rectangular panel 80 inches wide by 28 inches high. The boundary

conditions were idealized as simply supported, with the in-plane extensional deformation in the

width direction assumed to be zero. Balanced pairs of rectangular cross-section blade stiffeners of

unidirectional material were symmetrically located on both sides of a balanced, symmetric skin
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laminate. Combinations of uniaxial compression and shear loads representative of rib loads for a

commercial transport aircraft were applied. Diagonal and cross geodesically stiffened geometries,

as weft as longitudinally stiffened and flat plate configurations, were considered.

There did not appear to be an existing design code which met the needs, including computational

efficiency and analysis accuracy, of the design study for geodesicaUy stiffened panels. As such,

analysis procedures were implemented to consider three design constraints: buckling of the panel

assembly, local buckling of the stiffeners, and material strength failure. The in-plane load distrib-

ution for the panel was estimated by smearing the stiffeners. The Lagrange multiplier method

[LMM] panel buckling analysis was used to predict the critical load for a rectangular orthotropic

plate with a number of oblique stiffeners. Local buckling of the stiffeners was estimated by model-

ling the blade as a rectangular orthotropic plate under uniform axial compressive load. Material

failure in the skin or stiffeners was estimated using a maximum strain criterion. These analysis

routines were combined with a versatile numerical optimizer to create a stiffened panel design

package.

Several examples were introduced to demonstrate the convergence behavior of the LMM buckling

analysis. Comparison with finite element models for longitudinally and cross-stiffened panels indi-

cated that the smeared analysis gives a very good estimate for the in-plane load distribution. For

the longitudinally stiffened panels, the LMM analysis buckling loads are 3-6% higher for a thick

skin and 5-10% lower for a thin skin, compared with the published finite element results. For a

three cell cross-stiffened panel, the LMM results range from 40% lower for low-flexural-rigidity

stiffeners to only 5% lower for rigid stiffeners. Since optimum panels generally have relatively rigid

stiffeners, the LMM analysis should give a reasonable estimate of the true buckling load for this

application.

In the design study, optimum or minimum-mass panel designs were sought for the two geodesicaUy

stiffened panels and the longitudinally stiffened panel, with up to eight cells. The unstiffened flat

plate was also considered. The design variables were thickness of the skin laminate, stiffener height,
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and stiffener thickness. A quasi-isotropic [-45/45/90/0]s skin laminate with equal thickness plies

was assumed. A minimum thickness bound of 0.040 inch applied to the skin and stiffeners. Three

levels of external loads (100, 1000, 10000 lbf/in) were applied in uniaxial compression and pure

shear. Combined compression-shear of 100 to 30000 lbf/in was considered for the fiat plate and the

eight-ceU stiffened panels.

Structural efficiency trends from the design study indicated that there is, in general, a clear down-

ward trend in mass of the panels as the number of cells is increased. This is the case for all three

stiffened geometries, and the trend is more pronounced for heavier loads. Under compressive load,

the minimum-mass configuration is an eight cell diagonally stiffened panel, although the cross-

stiffened eight cell designs are very close in mass. Under shear, the trend is also towards a

minimum-mass design at eight cells, with the cross-stiffened designs being hghtest. However, for

the heaviest shear loading, the material failure constraint becomes active, causing the minimum-

mass design to occur at six (cross-stiffened) cells. For both compressive and shear loading, differ-

ences in structural efficiency between the three stiffened geometries become less pronounced as the

number of cells is increased. For combined loads, the cross-stiffened geometry is lightest at all

loading levels.

Trends in several geometric parameters were examined for the optimum diagonal and cross-stiffened

panels under compression and shear. In general, the trends are similar for both the diagonal and

cross parameters, although to varying degrees. For a given loading regime, either compression or

shear, the trends of a given parameter are quite consistent, with two exceptions. The first exception

occurs for shear-loaded, cross-stiffened panels with 7 and 8 cells, where significant deviations in

parameter trends can occur when the material failure constraint becomes active. The second occurs

primarily for the 10000 lbf/in shear-loaded, diagonally stiffened panel. In this case the exception is

thought to be the result of a change in buckling mode trends not observed at other load levels.
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Panelskin thickness generally decreases as the number of cells is increased, with the decrease more

substantial for compression than for shear. There is a large increase in skin thickness when the skin

material constraint becomes active.

Stiffener heights are quite large for compressed panels with only a few cells, but there is a significant

decrease as the number of cells is increased. For panels under shear, however, the stiffeners are

much shorter for a few cells and the height does not change much. There is a small drop in stiffener

height when the material failure constraint becomes active.

Stiffener thicknesses are on the minimum-thickness bound for the lowest level of compression and

shear load. For most of the heavier loads, the stiffener thicknesses are relatively constant under

compression. Under heavy shear load, however, a significant drop in stiffener thickness is observed,

primarily due to changing buckling modes.

Since stiffener thicknesses are relatively constant, the stiffener aspect ratio trends are similar to those

for stiffener height. That is, aspect ratios for compressively loaded panels are much higher than

those for panels under shear. Also, as the number of ceils is increased, the aspect ratios for com-

pression panels decreases significantly, whereas for panels under shear they remain quite constant,

particularly for light loading. In general, the geodesic stiffeners are rather thick, with most having

aspect ratios less than 20 and many less than 10.

The fraction of the load carded by the stiffeners for compression-loaded panels starts near zero for

few ceils and increases steadily as the number of ceils increases, reaching nearly 60% for a cross-

stiffened panel. The load fraction tends to increase as the applied load becomes larger. For shear-

loaded panels, the load fraction remains below about 20%, and in general varies little. However,

it does drop significantly when the material failure constraint becomes active. For both compression

and shear, the stiffener mass fraction generally increases as the number of cells increases, and is

higher for heavier loads. It too drops when the material failure constraint is active.
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At the present time, the LMM panel buckling analysis can model only a specially orthotropic skin

laminate. However, a solution for the buckling of anisotropic rhombic plates was developed during

the course of the work. This was used to estimate the effects of anisotropy, as well as skin section

shape and laminate orientation, on the local skin buckling behavior of a cross-stiffened panel.

A convergence example for the rhombic plate buckling analysis demonstrated that the new

Kennedy solution approaches the exact result from below, while the Standard solution conver-

gences from above, as the number of series terms is increased. The two solutions appear to con-

verge at about the same rate for this example. The computational cost of the Kennedy analysis is,

however, much higher than that for the Standard solution. The difference between the solutions

increases as the skewness of the rhombic plate increases. For a rhombus equivalent to an eight cell

panel under compression, the Standard analysis solution is 27% higher than the Kennedy solution

(results for orthotropic plate). For the same plate under shear, the Standard analysis critical load is

12% higher than the Kennedy result.

Comparing the rhombic plate solution with LMM solutions for cross-stiffened panels showed that

the rhombic plate model for local buckling produces highly conservative estimates of the panel

buckling loads. For a panel with artificially rigid stiffeners, the buckling loads predicted by the

rhombic analysis are only 47-61% (compression) and 65-74% (shear) of those local buckling loads

predicted by the LMM analysis. It appears that the edges of rhombus-shaped panel skin sections

may be restrained due to the presence of skin in the adjacent cells. Therefore, boundary conditions

may be closer to the clamped condition, as opposed to the simply supported condition assumed for

the rhombic plate analysis. Also, since the correlation is not constant over the range of cells, it is

not possible to simply apply a correction factor to the rhombic estimates. In addition, the design

study results revealed that optimum cross-stiffened panels, particularly under shear, may not always

buckle in a manner which produces a rhombus-shaped buckled skin section. Therefore, discrete

plate models for local buckling analyses should be used with caution.
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The rhombic plate analysis was used to estimate the effects of skin section skewing, laminate

anisotropy, and laminate orientation. Results from the rhombic plate study indicated that in-

creasing the skewness of a rhombic plate increases the plate buckling load significantly. The increase

is more substantial for compression (8.0 times) than for shear (5.5 times). This result is qualitatively

the same as trends seen in the design study for cross-stiffened panels. The maximum difference

between the anisotropic and orthotropic buckling loads for compressive loading of the present

[-45/45/90/01s laminate is 0.6%. Anisotropy causes the panel to be sensitive to the direction of

applied shear. The maximum drop from the orthotropic solution is almost 18% for positive

shearing of an eight-ceU panel. Plate buckling loads axe lower for compression than for shear, so

under combined compression-shear the buckling response is dominated by the compressive com-

ponent. That is, under combined compression-shear, anisotropy effects are suppressed but skewing

of the plate still has a large effect.

Rotation of the [-45/45/90/0ls laminate revealed that a maximum error of 4- 20% in the buckling

load could be incurred by ignoring artisotropic effects. The maximum deviation between

positive/negative shear anisotropic buckling loads and the orthotropic solution appears to be inde-

pendent of the rhombic plate geometry. The orientation at which the maximum deviation occurs,

however, appears to be a weak function of rhombic skewness. For each rhombus shape, there exist

two orientations of the [-45/45/90/0]s laminate at which the buckling load shows no preference for

the direction of applied shear. The laminate orientation at which these points exist is a function of

the skew angle of the rhombic plate.

6.2 Conclusions

• The Lasrange multiplier method [LMM] panel buckling analysis produces physically meaningful

buckled mode shapes for stiffened panels. Convergence of the critical load can be achieved with

Concluding Remarks 182



relatively few stiffener-skin constraint points and series terms in the skin deflection function.

The method generally appears to be conservative, but usually by less than about I0% when

localized buckling is predominant.

In general, LMM panel buckling results show a significant degree of interaction between local

inter-stiffener and global trans-stiffener buckling modes. Therefore, a simplified approach which

assumes solely local or global buckling will not always be capable of predicting the panel be-

havior with certainty.

The restraining effect of a continuous skin in stiffened panels makes the assumed classical

simple-support boundary conditions for a discrete plate element very conservative. In view of

the large degree of approximation in the boundary conditions for the rhombic plate, the addi-

tional expense of the Kennedy analysis may not be justil_ed for this application.

Design study trends indicate that minirnum-weight wing rib panels will use relatively closely

spaced stiffeners. As the number of cells (and stiffeners) increases, and the stiffeners become

closely spaced, the structural efficiencies of the three stiffened panel configurations become quite

close. However, the cross-stiffened geometry appears to be the most efficient stiffening arrange-

ment for most loading conditions.

The panel designs for compression appear to be more sensitive to the number of ceils used. That

is, for a compression-loaded panel both the skin thickness and stiffener height change markedly

as the number of cells is increased, but the same quantities remain relatively constant for a

shear-loaded panel.

The stiffeners appear to play a more active role in stabilizing the panels under compressive loads

than shear loads. The fraction of the load carried by the stiffeners is significantly higher for

compression-loaded panels. Also, the stiffeners for compression-loaded panels appear to sup-

port larger bending loads, as the stiffeners are relatively tall and have high aspect ratios. Con-

versely, the stiffeners for heavily-loaded shear panels may be quite flexible (short heights, low

aspect ratios), with the tensile-loaded stiffeners enforcing nodal lines and the compression-loaded

members deflecting considerably.
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It would appear that anisotropic effects are not significant (less than 1%) for compressive load-

ing of the present [-45/45/90/0]s laminate. Anisotropy causes the panel to be sensitive to the

direction of applied shear. The maximum error in shear buckling load due to assuming a state

of special orthotropy is an over-estimate of about 18%.

Rotation of the [-45/45/90/0]s laminate reveals that a maximum error of ± 20% in the buckling

load is possible by assuming special orthotropy with this laminate. Also, the standard laminate

orientation is near the orientation for maximum error. Laminate rotation may be a useful design

tool, as there are two orientations for each design at which the laminate shows no preference for

the direction of applied shear.

6.3 Recommendations for Future Work

La2range Multiplier Method Buckling Analysis

• The present Lagrange multiplier method [LMM] analysis code should be revised to incorporate

the effects of skin laminate bending-twisting coupling terms D_ and D26 by including the ap-

propriate strain energy term. Convergence studies should also be performed to assess the effect

of anisotropy on the convergence of the problem.

• LMM solution accuracy should be enhanced by incorporating the effect of torsion rigidity of the

stiffeners. This requires including the strain energy due to stiffener torsional deformation and

enforcing continuity of rotations between the skin and stiffeners. This should improve the ac-

curacy of the analysis for the present blade stiffeners, and also allow considering closed-section

stiffeners which have a torsional stiffness which cannot often be ignored.

• A future concept would be to model the blade stiffeners as plate elements rather than beams.

This would eliminate the need for considering stiffener crippling independently, eliminate the

approximation due to using assumed classical boundary conditions for the stiffener, and allow
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interaction of simultaneous skin-stiffener buckling modes. Also, other than specially orthotropic

stiffeners could be considered.

PANSYS Desien Code

* To allow more freedom in trying design concepts, the design code should allow more general

stiffening arrangements to be specified, such as any combination of longitudinal, transverse, or

oblique stiffeners.

• At the present time, the stiffened panels have no structure around the perimeter, and in-plane

transverse deformation of the panel is assumed to be zero. An elastic frame around the panel

edges, with the X direction in-plane boundary condition unrestrained would be more realistic

and should be incorporated. This feature would be more meaningful if torsional effects are in-

cluded in the LMM analysis, as the torsional restraint of the frame would also be included.

Geodesically Stiffened Panel Desiens

• Further design studies should examine the effects of optimizing individual ply thicknesses, op-

timizing ply orientations, using other skin laminate layups, and orientation of the entire skin

laminate. These studies may reduce the sensitivity of the cross-stiffened panel design to the

material failure constraints.

• It may be worthwhile to consider performance criteria other than load carrying capability. These

may include component stiffness (many structures are deflection-constrained), performance un-

der off-design load conditions (e.g. compression-carrying capacity of a shear panel), or sensitivity

to non-optimal design parameters (e.g. discrete ply thicknesses).

Rhombic Plates

• If a rhombic plate buckling solution is to be used to estimate local skin buckling behavior of

stiffened panels, clamped boundary conditions may give a better correlation.
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Appendix A. Sample Input File for PANSYS

Design Code

The design package PANSYS allows efficient constrained optimization of flat and stiffened rec-

tangular composite panels under compression and shear loads. Analysis routines estimate panel

buckling, stiffener crippling, and material failure loads for fiat plates, longitudinally stiffened

panels, and two geodesically stiffened panels. The analysis capability is coupled with a versatile

optimization package with many available options to permit automated design of minimum-

weight panels. A post-processing option enables buckled mode shape contour plots to be cre-

ated for the panels. PANSYS analysis routines are modular in form and written in FORTRAN

77. The code requires access to the numerical optimization program ADS z2 and several

IMSL _ library routines for matrix operations and solution of eigenvalue problems. To provide

some insight into the capabilities of the PANSYS design code, this section briefly reviews a

sample input file (Figure AI). The example presented is for a four cell cross-stiffened panel

under combined loads of 1000 lbf/in compression and 100 lbf/in shear.

Data group (1) in Figure AI controls the printed output from PANSYS and ADS. The pa-

rameter 1ADS is transferred to the ADS program to control output from various ADS functions

during the optimization run. The remaining parameters are for various PANSYS analysis rou-
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tines which calculate component geometric and elastic properties, panel load distribution,

fiat/stiffened plate buckling, stiffener crippling, and material failure. For the five lines with two

values, the first parameter (IPxxl) controls output during the iteration process (generally used

for debugging only), and the second parameter (IPxxF) controls output for the final design. For

each print parameter, a value of 0 indicates no output, a value of 1 produces brief output, and

a value of 2 produces detailed output. In addition, a value of 2 for the panel (IP45) or stiffener

(/P60) buckling analysis output parameter causes an eigenvector for the buckled mode shape to

be generated.

In the following two data groups, an S suffix on the variable name indicates that it is applicable

to the skin of the panel, and an R suffix indicates that it is for the ribs or stiffeners.

Data group (2) primarily specifies material properties for the skin and stiffeners. The quantities

required for the skin are moduli El, Fa, GI2, Poisson's ratio vt2, and density p. The stiffeners re-

quire these same quantities, as well as transverse shear moduli G23 and G3,. The parameter

SCF is the shear correction factor, commonly taken as 5/6 for fibrous composite materials.

Data group (3) specifies maximum strain allowables for the skin and stiffener material failure

analyses. For the skin these are longitudinal normal strain allowables in tension and com-

pression (_[, _y),transverse normal strain allowables in tension and compression (_, q), and shear

strain allowable (Yl2). Since the stiffeners are assumed to be in a state of uniaxial stress, only

longitudinal strain allowables (_, _) are required.

Data group (4) specifies panel planform geometry and loading. The variables include panel

width and height, the geometry type, the number of stiffened cells, and the axial compressive

and shear load intensities. For geometry, IGEOM = I indicates a fiat plate, IGEOM = 2 a

longitudinally stiffened panel, IGEOM = 3 a diagonally stiffened panel, and IGEOM = 4 a

cross-stiffened panel.
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Data group (5) specifies parameters for the buckling analyses. For the LMM panel buckling

analysis, the number of skin deflection function terms in the X direction (MM) and Y direction

(NN), and the number of constraint points per stiffener (KK) are specified. The number of terms

in the stiffener buckling analysis shape functions are denoted by NWX, NWY, NPXX, NPXY,

NPYX, NPYY, which stand for the factors Nf, N_, N_, N_, N_,, N_, from Section 3.3. The pa-

rameter IEND specifies the assumed end restraint condition for the stiffener; 1END = I indicates

simply supported ends and IEND = 2 clamped ends.

Data group (6) specifies starting or reference values for panel dimensions which are eligible to

be design variables. Two possible design variables are the stiffener height (SH) and stiffener

thickness (ST). In PANSYS, panel dimensions which are eligible to be design variables are re-

tained in a vector called RD V, and the reference values remain unchanged through the design

process. The number of plies in one-half of the skin laminate (NHPL Y) is specified next, fol-

lowed by eligible design variables of thickness and orientation for each lamina. As a symmetric

laminate is assumed, only one-half of the laminate is specified. An error message will be issued

if angle plies in the laminate are not balanced.

Data group (7) defines the design variables. As mentioned previously, the vector RD V contains

a set of fixed reference dimensions. Each design variable acts as a scale factor which can be

applied to any number of reference values in RD V. In the present example, ND V = 3 specifies

that 3 design variables follow. For each design variable, it is first specified how many parameters

in RD V it controls, or the number of parameters in the "design variable group" (ND VG). The

locations in RDV of ND VG geometric parameters for that design variable then follows. For

example, the first design variable controls one geometric parameter, the stiffener height, which

is located in RD V(1). The second design variable also controls one geometric parameter, located

in RD V(2), which is the stiffener thickness. The third design variable controls 4 parameters,

located in RDV(11)-RDV(14) , which are the ply thicknesses. Therefore, all plies will be scaled

a like amount through the design process. Note that the ply orientations, located in

RD II(5 I)-RD V(54), will not change in this example because no design variable has been assigned
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to them. The initial value (X), plus lower (VLB) and upper (VU_ bounds for each design

variable, are then specified. Although any initial value can be used for the design variables, it

is recommended that reasonable values for the geometric parameters be put in RD V so that the

initial design variable values may be left at 1.0. This helps to ensure that all design variables are

of approximately the same magnitude, which is beneficial to the optimization algorithm.

Data group (8) specifies the number of constraints (NCON) to be imposed, followed by the type

of constraint(s) (ICON). Constraint ICON = 1 is panel buckling, ICON = 2 is stiffener crippl-

ing, ICON = 3 is skin material failure, and ICON = 4 is stiffener material failure. In the present

example, two constraints, namely panel buckling and stiffener crippling, are imposed.

Data group (9) specifies optimization parameters for ADS. For more detailed information on

ADS parameters, see the ADS user's manual". The strategy (ISTRA 73, optimizer (IOPT), and

one-dimensional search (IONED) strategies are selected first. The next set of parameters is used

if default values for constants (typically convergence criteria, tolerances, etc.) in ADS are to be

over-ridden. Specifying INFO = 0 indicates that all default constants are to be used, whereas

INFO-- -2 indicates that one or more values are to be changed. If INFO = -2, the values of

NIP and NRP specify the number of integer and real constants, respectively, to be changed.

Following NIP and NRP are the locations of the constants in an ADS array and the new value

that each is to take on. In the present example, 3 integer constants

(ISCAL, ITRMST, JTMAX) and 5 real constants (CT, CTMIN, FDCH, FDCHM, ZRO) are to

be altered. The ADS user's manual describes the purpose of the various constants, their lo-

cations in an integer or real array, and the default values.
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Value Parameter Name

2310 lADS
2 IPl0
0 2 IP20I, IP20F
0 2 IP30I, IP30F
0 2 IP45I, IP45F
0 2 IP60I, IP60F
0 2 IP90I, IP90F

18.5E06 EIS
1.64E06 E2S
0.87E06 G12S
0.30 V 12S
0.057 RHOS

18.5E06 EIR
1.64E06 E2R
0.87E06 GI2R
0.54E06 G23R
0.87E06 G3 IR
0.30 VI2R
0.057 RHOR
0.83333 SCF

0.0090 E 1ALTS
0.0080 EIALCS
0.0055 E2ALTS
0.0100 E2ALCS
0.0140 E12ALS

0.0090 E IALTR
0.0080 E 1ALCR

80.0 PW
28.0 PH
4 IGEOM
4 NC
1000.0 PNY
100.0 PNXY

17 MM
11 NN
11 KK

Data Group

(I) - print parameters

(2)- material data, skin

- material data, stiffener

(3)- strain allowables, skin

- strain allowables, stiffener

(4)- panel geometry & loading

(5)- analysis parameters, panel buckling

Figure AI. Sample Input File for PANSYS Design Code
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Value

2.00
0.I0

4
0.015 -45.0
0.015 45.0
0.015 90.0
0.015 0.0

3
1 1
1 2
4 11 12 13 14

1.0 0.2 5.0
1.0 0.2 5.0
1.0 0.2 5.0

Parameter Name

NWX
NWY
NPXX
NPXY
NPYX
NPYY
lEND

SH [RDV(1)]
ST [RDV(2)]

NHPLY
THICK(1),THETA(I)

Data Group

(5)- analysis parameters, cont'd
- stiffener crippling

(6)- variable panel geometry

[RDV( 11),RDV(51)1
[RDV(12),RDV(52)]
[RDV(13),RDV(53)]
[RDV(lg),RDV(54)I

NDV
NDVG(I),NDVG locns in RDV

X(1),VLB(1),VUB(1)

2 NCON
1 2 ICON(I)

9 ISTRAT
5 IOPT
7 IONED

(7)- designate design variables

-2 INFO
3 NIP
2 0 ISCAL
5 4 ITRMST
7 20 JTMAX
5 NRP
3 -0.01 CT
6 0.001 CTMIN
21 0.001 FDCH
22 0.0001 FDCHM
37 1.0E-06 ZRO

- bounds on design variables

(8)- define constraints

- ADS optimization options

(9)- override ADS defaults

Sample Input File forPANSYS Design Code, cont'd

Appendix A. Sample Input File for PANSYS Design Code 196



Appendix B. Design Data for Optimum Wing Rib

Panels
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TableBI. Flat Plate Design Data (Compression, Shear)

Flat Plate

D V(I ) Skin Thickness (in)
OBJ Plate Mass 0bin)

G(l) Skin Buckling
G(2) Skin Strength

PURE COMPRESSION

N. = 100
(fbf/in)

0.210
26.82

0.10E-3

-0.99E00

PURE SHEAR

N. = 1000
(lbfAn)

0.453
57.78

-0.12E-5

-0.97E00

Ny = 10000
(Ibf_'_n)

0.975
124.5

0.21E-5
-0.84E00

0.121

15.46
-0.15E-5

-0.97E00

N_. = 1000 N_y= 10000
([brAn) (lbrAn)

0.261 0.562

33.32 71.78
0.89E-5 -0.26E-6

-0.88E00 -0.43E00

D V(i) = Design Variables, G(i) = Constraints, OgJ = Ob ective Function

Constraints G(i) are feasible when negative, violated when positive, range: -1 _< G(i) < oo
Skin laminate [-45/45/90/01s, all plies equal thickness, minimum skin thickness = 0.040 inch
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TableB2. LongitudinallyStiffenedPanelDesignData(Compression, Shear)

PURE COMPRESSION

Ny-- I0000
(lbf/in)

Nx, = 100
(ilafAn)

1 Cell

D V(I) Stiffener Height (in)
D V(2) Stiffener Thickness (in)

D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling

G(3) Skin Strength
G(4) Stiffener Strength

2 Cells

D V(I) Stiffener Height (in)
D V(2) Stiffener Thickness (in)

D V(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiffener Load Fraction

Stiffener Mass Fraction

G(I) Panel Buckling

G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

3 Cells

D V(1) Stiffener Height (in)

D I,'(2) Stiffener Thickness (in)

D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction

Stiffener Mass Fraction

G(1) Panel Buckling

G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

4 Cells

D V(I) Stiffener Height (in)

D 1I(2) Stiffener Thickness (in)
D/I(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(1) Panel Buckling
G(2) Stiffener Buckling

PURE SHEAR

N. -- 100
(l'bffin)

N;l I000
bf/in)

N/A N/A

0.980 1.565
0.040 0.128

0.172 0.368
22.07 47.65
0.013 0.030

0.006 0.013
-0.13E-5 -0.43E-4
-0.12E00 -0.15E-1

-0.99E00 -0.96E00
-0.99E00 -0.96E00

0.716 1.268
0.040 O. l 14

0.143 0.305
18.45 39.88
0.022 0.051

0.010 0.023
O.llE-2 -0.17E-4

-0.43E00 -0.14E-I
-0.99E00 -0.95E00
-0.99E00 -0.95E00

0.656 1.000

0.040 0.097
0.123 0.262

15.90 34.36
0.035 0.059
0.016 0.027

0.73E-3 0.72E-2

-0.45E00 -0.86E-2
-0.99E00 -0.95E00

N/A

1.595

0.294
0.802

104.0
0.032

0.014
0.10E-2

-0.78E-1

-0.82E00
-0.82E00

1.494

0.300
0.652

86.17
0.072

0.033
0.32E-1

-0.66E-1

-0.78E00
-0.78E00

1.394
0.302

0.559
75.36
0.113
0.053

-0.12E-7

-0.95E-1
-0.76E00

-0.76E00

N/A

0.781
0.040
0.112
14.40

0.000
0.007

0.20E-4

-0.10E01
-0.97E00

-0.10E01

0.804
0.040

0.099
12.91

0.000
0.016

0.10E-5

-O.10E01
-0.97E00

-0.10E01

0.830

0.040
0.089

11.69
0.000
0.027

0.21E-4
-0.10E01
-0.96E00

-0.10E01
G(3) Skin Strength
G(4) Stiffener Strength -0.99E00 -0.95E00

D V(i) - Design Variables, G(i) = Constraints, OBJ = Objective Function, N/A = Not Applicable
Constraints G(i) are feasible when negative, violated when positive, range: -1 <_ G(i) < oo
Skin laminate [-45/45/90/0]s, all plies equal thickness, minimum skin thickness = 0.040 inch
Minimum stiffener thickness = 0.040 inch

N,, = 1000 N,y = i 0000
_bf/in) (ibf/in)

N/A N/A

1.706 3.527

0.040 0.040
0.241 0.520

31.02 66.84
0.000 0.000
0.007 0.007

0.32E-5 -0.41E-6
-0.10E01 -0.10E01
-0.87E00 -0.39E00

-O.10E01 -0.10E01

1.727 3.681

0.040 0.040
0.214 0.462
27.81 59.92
0.000 0.000
0.016 0.016

0.18E-5 O.10E-4
-0.10E01 -O.10E01
-0.85E00 -0.31E00
-0.10E01 -0.10E01

1.769 3.815
0.040 0.040
0.192 0.414
25.19 54.28
0.000 0.000
0.027 0.027

0.27E-8 0.95E-4
-0.10E01 -0.10E01

-0.83E00 -0.23E00
-0.10E01 -0.10E01
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LongitudinallyStiffenedPanel Design Data (Compression, Shear), cont'd

5 Ceils

DV(I) Stiffener Height (in)
D V(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

6 Cells

D V(1) Stiffener Height (in)
D//(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

7 Cells

DV(I) Stiffener Height (in)
D//(2) Stiffener Thickness ('m)
D I,'(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(1) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

8 Cells

19 V(I) Stiffener Height (in)
D V(2) Stiffener Thickness (in)

D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(1) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

PURE COMPRESSION

2_b = 100
fan)

0.619
0.040
0.108
14.06
0.050
0.023

0.21E-3
-0.45E00
.0.99E00

.0.99E00

0.603
0.040
0.096

12.67
0.066
0.030

0.65E-4
.0.42E00

-0.99 E00
-0.99 E00

0.596
0.040
0.087
11.58
0.085
0.039

0.76E-3
-0.39E00
-0.98 E00
.0.98E00

0.599
0.040

0.080
10.71
0.106
0.050

0.90E-3
-0.34E00
-0.98E00
-0.98 E00

N(I= 1000
bran)

0.956
0.098

0.229
30.43

0.085
0.039

0.70E-3
-O.10E-I

.0.94E00
-0.94E00

0.888
0.099

0.206
27.75

0.108
0.051

-0.62E-8
-0.92E-1

-0.93 EO0
.0.93E00

0.880
0.102

0.185
25.32

0.141
0.068

.0.12E-7

.0.79E-1
-0.93E00

-0.93E00

0.895
0.102
0.167
23.38
0.178
0.087

0.57E-3
-0.16E-3
.0.93E00

.0.93E00

N_ = 10000
(Ibf/in)

1.293
0.338
0.477
66.49
0.172
0.084

0.58E-3
-0.31E00

-0.73E00
-0.73E00

1.265
0.326
0.421
60.33

0.217
0.109

0.40E-2
-0.24E00
.0.72E00
.0.72E00

1.255
0.302
0.381
55.92

0.253
0.130

-0.32E-6
-0.80E-I
-0.70E00

-0.70E00

1.217

0.301
0.350
52.80
0.293
0.155

-0.98E-7
-0.95E-1

.0.69E00

.0.69E00

N_.= 100

0.947
0.040
0.080
10.72
0.000
0.045

0.35E-4
.0.10E01
-0.96E00

-O.10E01

0.932
0.040
0.073
9.975

0.000
0.060

0.47E-4
-0.10EO1
.0.96E00

.0.10E01

0.966
0.040
0.067
9.313
0.000
0.079

0.77E-4
-0.10E01
-0.95E00
.0.10E01

D V(i)= Design Variables, G(0 = Constraints, OBJ= Objective Function

PURE SHEAR

N, = 1000 N,_ = 10000
([bf:in) (Ibf:qn)

1.994 4.323
0.040 0.040
0.173 0.372
23.08 49.73

0.000 0.000
0.044 0.044

0.37E-4 -0.87E-6
•0.10E01 -0.10E01
•0.82E00 .0.14E00
-O.10E01 .0.10E01

1.988 4.286
0.040 0.040
0.158 0.341
21.49 46.30
0.000 0.000
0.059 0.059

0.41E-4 -0.12E-6
•0.10E01 .0.10E01

-0.80E00 .0.65E-1
-O.10EOI .0.10E01

2.081 3.764
0.040 0.040
0.145 0.319
20.06 43.63
0.000 0.000
0.079 0.066

0.69E-4 .0.44E-6

-0.10E01 -0.10E01
-0.78E00 -0.98E00
-O.10E01 -O.10E01

1.922 3.109
0.040 0.040
0.136 0.319
19.07 43.52

0.000 0.000
0.090 0.064

0.10E-4 0.65E-7

-O.10E01 -0.10E01
-0.77E00 0.41E-4

-0.10E01 -0.10EO1

0.893
0.040
0.063
8.851
0.000
0.090

0.44E-4
.0.10E01
.0.95E00
-O.10EOI

Constraints G(i) are feasible when negative, violated when positive, range: -1 < G(i) < oo
Skin laminate [-45/45/90/01s, all plies equal thickness, minimum skin thickness = 0.040 inch
Minimum stiffener thickness - 0.040 inch
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TableB3. DiagonallyStiffenedPanelDesignData(Compression,Shear)

PURE COMPRESSION

/_b-- 100 N. = 1000 Ny-- 10000
fan) _lbf/in) 0bf/in)

1.707

0.040
0.151

20.10
0.010

0.038
0.23E-6
0.19E-4

-0.99E00
-1.00E00

0.876
0.040

0.131

17.28
0.032

0.032
-0.12E-7
-0.39E00
-0.99E00
-0.99E00

2.170

0.108

0.329
44.67
0.015

0.059
0.56E-4

-0.18E-3
-0.95E00
-0.99E00

1.149
0.088
0.283

37.69
0.042

0.042
0.15E-I

-0.18E-3
-0.95E00
-0.97E00

0.981

0.089
0.236

32.01
0.085

0.058
0.12E-6
0.24E-6

-0.94E00
-0.95E00

0.914

0.092
0.197

27.40
0.139
0.083

0.56E-7
0.13E-6

-0.93E00
-0.94E00

2.845
0.302

0.717
101.1

0.025
0.095

0.89E-4
-0.22E-3
-0.79E00
-0.93E00

1.619
0.269

0.601
83.52
0.081
0.082

0.15E-I
-0.34E-1

-0.77E00
-0.85E00

1.366
0.264

0.492
70.45

0.155
0.109

0.22E-1
-0.28E-3

-0.74E00
-0.79E00

1.274
0.269
0.406

61.13
0.242

0.152

0.31E-2
-0.24E-3
-0.71EO0
-0.75E00

Nx. = 100
(l_ff/in)

0.852
0.048
0.108
14.19
0.045
0.032

-0.71 E-3

0.64E-3
-0.97E00
-0.98E00

0.908

0.052

0.098
13.20
0.080

0.056
0.16E-7

0.44E-4
-0.97E00
-0.98E00

0.881

0.050
0.082
11.47
0.080

0.081
0.13E-4

-0.51E-3
-0.96E00
-0.98E00

PURE SHEAR

0.846
0.040

0.109
14.62
0.072
0.049

0.69E-8
-0.20E00

-0.99E00
-0.99E00

0.813
0.040

0.091
12.46

0.119
0.071

0.36E-8
-0.80E-I
-0.99E00
-0.99E00

1 Cell

D V(1) Stiffener Height (in)

D V(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(1) Panel Buckling
G(2) Stiffener Buckling

G(3) Skin Strength
G(4) Stiffener Strength

2 Cells

D V(I ) Stiffener Height (in)
D V(2) Stiffener Thickness (in)

D V(3) Skin Thickness (in)
OBJ Panel Mass 0bm)
SOftener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

3 Cells

D V(I) Stiffener Height (in)
D V(2) Stiffener Thickness (in)

!D//(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength
G(4) SOftener Strength

4 Cells

D V(1) Stiffener Height (in)

D//(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (lbm)
Stiffener Load Fraction
Stiffener Mass Fraction
G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength

G(4) SOftener Strength

0.844
0.047
0.070
10.03
0.073
0.108

0.66E-4
-0.18E-3
-0.96E00
-0.98E00

N, = 1000 Nxj, = 10000
Eibf/in) (Ibf/in)

1.031 1.223
0.124 0.321

0.232 0.501
31.02 68.30

0.065 0.089
0.046 0.064

0.75E-6 -0.16E-2
-0.20E-2 -0.34E-3
-0.87E00 -0.42E00

-0.92E00 -0.63E00

1.121 1.331
0.138 0.352

0.210 0.456
29.22 65.55

0.116 0.155
0.083 0.112

0.49E-8 0.18E-4
-0.45E-5 -0.45E-2

-0.87 E00 -0.41E00
-0.91E00 -0.62E00

1.114 1.362
0.134 0.347

0.179 0.393
25.97 60.16

0.120 0.164
0.122 0.167

-0.28E-3 -0.18E-3
0.20E-4 -0.66E-3

-0.84E00 -0.32E00
-0.92E00 -0.64E00

1.109 1.393
0.130 0.342
0.152 0.342
23.37 56.56
0.116 0.162

0.168 0.229
0.19E-5 0.79E-8

-0.65E-5 -0.61E-4
-O.82E00 -0.22E00
-0.92E00 -0.66E00

D V(i) = Design Variables, G(i) = Constraints, OBJ = Ob ective Function
Constraints G(i) are feasible when negative, violated when positive, range: -1 < G(0 < 00
Skin laminate [-45/45/90/0]s, all plies equal thickness, minimum skin thickness " 0.040 inch
Minimum stiffener thickness = 0.040 inch
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DiagonallyStiffened Panel Design Data (Compression, Shear), cont'd

PURE COMPRESSION

5 Cells

D I:(1 ) Stiffener Height (in)
D/:(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(1) Panel Buckling

G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

6 Cells

D V(I) Stiffener Height (in)
D/-'(2) Stiffener Thickness (in)
D//(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling

G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

7 Cells

D V(1) Stiffener Height (in)
D/,'(2) Stiffener Thickness (in)
D//(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(1) Panel Buckling

G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

8 Cells

DV(1) Stiffener Height (in)
D/,'(2) Stiffener Thickness (in)

D V(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiffener Load Fraction

Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

N. = 100
(fbf/in)

0.685

0.040
0.078
10.81

0.151
0.084

-0.33E-5
.0.23E00

-0.98E00
-0.99E00

0.765
0,041
0.066
9.662

0.229
0,128

0,51E-2
.0.30E-3
.0.98E00
-0.98 EO0

0.778
0.043
0.058
8.886

0.300
0.171

0.73E-4
0.59E-4

.0.98E00

-0.98E00

0.761
0.043
0.052

8.284
0.352

0.204
0.54E-3

0.86E-5
•0.98 EO0
-0.98 E00

N(I = 1000
bfdn)

1.007
0.107
0.160
23.98

0.254
0.149

0.43E-4
.0.24E-2

.0.93E00
.0.93E00

1.084
0.117

0.133
21.92

0.374
0.228

0.65E-2

.0.34E-3
.0.93E00
.0.93E00

1.047
0.115
0.117
20.43
0.435
0.270

-0.44E-5
-0.18E-4
-0.93E00
-0.93E00

1.063
0.117
0.101

19.37
0.516

0.334
0.76E-3

-0.34E-3
-0.93E00
-0.93E00

N_= 10000
Ib_in)

1.414
0.304
0.320
55.10

0.403
0.259

0.18E-4
•0.21E-5

.0.72E00

.0.74E00

1.422

0.306
0.272
51.91

0.500
0.331

-0.15E-5
.0.36E-3
.0.72E00

-0.73E00

1.370

0.298
0.242

49.44
0.557
0.376

-0.15E-3
-0.14E-3
.0.72E00
.0.73E00

1.322
0.288
0.219
47.69
0.601

0.414
•0.21E-7

-0.23E-4
.0.72E00
.0.73E00

N,. = 100
(l_bf/in)

0.824
0.045

0.060
8.956
0.068
0.139

0.22E-3
.0.18E-3

.0.95E00
-0.98 E00

0.800

0.043
0.055
8.378

0.059
0.161

0.22E-5
-0.33E-5
-0.95E00

-0.98E00

0.773
0.040
0.052
7.997
0.051

0.176
•0.91 E-6
.0.75E-6
.0.94E00
.0.98E00

D V(i) = Design Variables, G(i) = Constraints, OgJ = Objective Function

PURE SHEAR

N_ = 1000
([bf/in)

1.092
0.126

0.133
21.52
0.109

0.212
-0.26E-4

0.93E-6
.0.79E00
.0.92E00

1.053

0.118
0.123
20.57

0.093
0.237

.0.77E-6
0.27E-6
-0.77E00

-0.93E00

1.011
0.109

0.117
19.95
0.077

0.252
0.49E-8

-0.34E-5
.0.75E00
.0.93E00

0.786
0.040
0.048
7.708
0.050
0.212

0.15E-4

-0.78E-2
.0.94E00

-0.99E00

0.972
0.I01

0.III
19.35

0.065
0.265

-0.38E-7

.0.92E-4
-0.73E00

-0,94E00

Constraints G(i) are feasible when negative, violated when positive, range: -1 < G(i) < oo
Skin laminate [-45/45/90/0]s, all plies equal thickness, minimum skin thickness = 0.040 inch
Minimum stiffener thickness = 0.040 inch

N_y = 10000
(Ibf/in)

1.270
0.301
0.322
53.86

0.122
0.236

0.44E-6
0.60E-6
-0.13E00

.0.69E00

1.072
0.239
0.329

52.04
0.073
0.194

-0.66E-4
-0.74E-4
.0.10E00

.0.72E00

0.945
0.201

0.323
49.95

0.050
0.173

1.00E-8

-O.81E-5
.0.63E-1
-0.75E00

0.907

0.187
0.306
47.85

0.042
0.184

0.28 E-4
-0.64E-4
.0.56E-3

.0.76E00
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TableB4. Cross-StiffenedPanelDesignData(Compression,Shear)

l Cell

Stiffener Height (in)
D I/(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction

Stiffener Mass Fraction

G(1) Panel Buckling
G(2) Stiffener Buckling

G(3) Skin Strength
G(4) Stiffener Strength

2 Cells

D V(I ) Stiffener Height (in)

D V(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass 0bin)
Stiffener Load Fraction
Stiffener Mass Fraction

G(1) Panel Buckling

G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

3 Cells

O V(I) Stiffener Height (in)

D V(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction

Stiffener Mass Fraction
G(1) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength

G(4) Stiffener Strength

4 Cells

_Stiffener Height (in)
D V(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)

Stiffener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling

G(3) Skin Strength
G(4) Stiffener Strength

PURE COMPRESSION

N,= 10000
fib f/in)

2.613
0.040

0.116
16.85

0.004
0.120

0.78E-3
-0.25E-1

-0.99E00
-1.00E00

N. = 100 N. = 1000

(fbf!_n) (Ibf/in)

3.614
0.113

0.256
40.56
0.006

0.195

0.58E-3
-0.18E-3

-0.94E00
-0.99E00

1.796
0.098
0.257
36.69

0.029
0.107

0.23E-3
-0.17E-3

-0.94E00
-0.98 E00

1.333
0.040

0.118
16.21

0.019
0.073

0.52E-3
-0.25E00
-0.99E00
-I.00E00

0.952 1.324

0.040 0.095
0.107 0.231

14.64 32.81
0.044 0.066

0.069 0.102
0.38E-3 0.21E-3

-0.33E00 -0.13E-3
-0.99E00 -0.94E00

-0.99E00 -0.97E00

0.787 1.104
0.040 0.094
0.094 0.203

13.05 29.14
0.075 0.111
0.076 0.111

0.85E-4 0.47E-3
-0.36E00 -0.99E-3
-0.99E00 -0.93E00
-0.99E00 -0.96E00

5.084
0.321

0.570
104.2
0.012

0.302

0.12E-2
0.71E-4

-0.74E00
-0.97E00

2.515
0.283

0.555
86.78

0.052
0.183

0.62E-3
-0.31E-3

-0.74E00
-0.91 E00

1.815
0.270
0.495

76.12

0.113
0.170

0.59E-3
-0.97E-3
-0.73E00
-.0.86E00

0.911
0.047

0.082
11.29

0.048
0.074

0.21E-4

-0.18E-3
-0.96E00
-0.98E00

PURE SHEAR

0.670
0.041

0.085
11.46

0.075
0.054

0.44E-4
0.21 E-4

-0.97E00
-0.98E00

N_. = 100 Nx =I000
(l_f, ln) _bf/in)

1.205
0.133

0.177
25.74

0.080
0.121

0.46E-4
-0.22E-3

-0.83E00
-0.93E00

0.855
0.113

0.182
25.34

0.117
0.085

0.23E-4
0.14E-4

-0.85E00
-0.90 E00

0.706
0.099
0.168

28.25
0.123

0.080

0.23E-4
0.48E-4

-0.83E00
-0.89E00

0.559
0.040

0.078
10.58

0.087
0.056

0.27E-'4
-0.15E00

-0.96E00
-0.97E00

N.,y = 10000
(Ibf, in)

1.538
0.362

0.390
60.53

0.120
0.178

-0.52E-8
-0.27E-4
-0.28E00
-0.69E00

1.142
0.327

0.381
56.92

0.197
0.146

0.16E-2
-0.43E-1
-0.33E00
-0.57E00

0.995
0.311

0.345
52.18
0.231

0.157

-0.12E-3
-0.96E-1

-0.29E00
-0.51E00

1.536 0.477 0.638 0.918
0.267 0.040 0.092 0.278
0.427 0.071 0.152 0.313

67.34 9.652 21.26 48.04
0.190 0.088 0.121 0.226

0. ! 91 0.062 0.087 0.167

0.11E-2 -0.21E-6 0.66E-3 0.35 -4
0.32E-3 -0.35E00 -0.11E-2 -0.32E-3

-0.71E00 -0.96E00 -0.82E00 -0.21E00

-0.81E00 -0.97E00 -0.88E00 -0.49E00

D V(i)= Design Variables, G(i)= Constraints, OBJ = Objective Function
Constraints G(i) are feasible when negative, violated when positive, range: -1 _< G(i) < oo
Skin laminate |-45/45/90/0ls, all plies equal thickness, minimum skin thickness = 0.040 inch
Minimum stiffener thickness = 0.040 inch
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Cross-StiffenedPanel Design Data (Compression, Shear),cont'd

I

[5__Cells

D V(I) Stiffener Height (in)

D/:(2) Stiffener Thickness (in)
DV(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiffener Load Fraction
Stiffener Mass Fraction
G(1) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

6 Cells

D V(I) Stiffener Height (in)
D V(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)

OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

7 Cells

D V(l) Stiffener Height (in)
D/:(2) Stiffener Thickness (in)

D/:(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(1) Panel Buckling
G(2) Stiffener Buckling

G(3) Skin Strength
G(4) Stiffener Strength

8 Cells

DV(1) Stiffener Height Urn)
D/:(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction

Stiffener Mass Fraction

G(I) Panel Buckling
[G(2) Stiffener Buckling

G(3) Skin Strength
G(4) Stiffener Strength

PURE COMPRESSION

N. =100

(/bbin)

0.689
0.040
0.082

11.52
0.110

0.088
0.88E-4

-0.38E00
-0.98E00

-0.99E00

0.624
0.040

0.072
10.22

0.148
0.104

•0.31E-6

-0.40E00
-0.98E00

-0.99E00

0.572

0.040
0.063
9.138
0.186
0.121

-0.20E-6
-0.42E00
-0.98E00
-0.98E00

0.546
0.040
0.056

8.324
0.228

0.143
0.35E-2

-0.41E00
-0.98E00
-0.98E00

N_I= 1000
bf/in)

0.987
0.094

0.175
25.74

0.164
0.132

0.18E-3

-0.17E-3
-0.93E00

-0.95E00

0.918

0.095
0.151

22.90
0.224
0.161

0.21E-3
-0.34E-2

-0.92E00
-0.94E00

0.828
0.091

0.132
20.53
0.264
0.178

0.45E-3
•0.71E-4

-0.92E00
-0.93E00

0.844

0.097
0.113

18.91
0.352
0.234

0.22E-2
-0.23E-1
•0.91E00
-0.92E00

Ns --10000
(lbf/in)

1.374
0.265

0.362
59.62
0.271

0.224
0.14E-2
0.38E-3

-0.69E00
-0.77E00

1.244
0.258
0.311

53.38
0.340
0.255

0.54E-3

-0.14E-3

-0.68E00
-0.74E00

1.178
0.257
0.264
48.36
0.419
0.302

0.16E-2
-0.10E-2
-0.66E00
-0.71EO0

1.216
0.265

0.220
45.63
0.525

0.383
0.13E-2

-0.10E-3
-0.67E00

-0.71E00

PURE SHEAR

0.442

0.040
0.064

8.810
0.088
0.074

0.17E-4
-0.44E00
-0.95E00
-0.97E00

0.408
0.040

0.058
8.079
0.084
0.086

0.15E-3

-0.52E00
-0.95E00
-0.97E00

0.391
0.040
0.053
7.497
0.082
0.101

0.73E-4
-0.56E00
-0.95E00
-0.97E00

0.400

0.040
0.048
7.000
0.084
0.124

0.95E-3
-0.54E00

-0.94E00
-0.97E00

N_. = i000

0.623
0.090
0.137
19.53

0.125
0.106

0.37E-3
-0.22E-3
-0.80E00
-0.88E00

0.627

0.091
0.122

17.97
0.132
0.135

0.96E-3
•0.41E-3

-0.77E00
-0.88E00

0.605
0.088
0.112
16.91
0.124
0.151

0.17E-I
-0.17E-I

-0.75E00
-0.88E00

0.618
0.088

0.102
15.98

0.129
0.186

0.96E-2
-0.22E-3

-0.73E00

-0.88E00

N. -- 1000{
(Ibfqn)

0.899
0.273

0.282
44.98

0.232
0.201

0.23E-2

-0.36E-2
-0.13 E00

-0.49 E00

0.890

0.270
0.250

42.11
0.238
0.242

0.15E-2
-0.23E-3
-0.27E00
-0.48 E00

0.831
0.243
0.258

42.75
0.190
0.228

0.19E-8
-0.50E-5
-0.56E-6
-0.52E00

0.763
0.213
0.274

43.81
0.141

0.201
0.23E-6

-0.67E-6
-0.40E-6

-0.56E00

D V(i) = Design Variables, G(i) = Constraints, OBJ = Objective Functior

Constraints G(i) are feasible when negative, violated when positive, range: -1 < G(i) < oo
Skin laminate [-45/45/90/0]s , all plies equal thickness, minimum skin thickness -- 0.040 inch
Minimum stiffener thickness = 0.040 inch
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Table BS. Longitudinally, Diagonally, and Cross-Stiffened Panels Design Data (10000 Ihf/in Shear
with Material Failure Constraint Violation)

_Stiffened Panel
D V(1) Stiffener Height (in)
D//"(2) Stiffener Thickness (in)
D//(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction
Stiffener Mass Fraction

G(I) Panel Buckling

IG(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

_Stiffened Panel
D V(I) Stiffener Height (in)
D V(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)
OBJ Panel Mass (Ibm)
Stiffener Load Fraction

Stiffener Mass Fraction

G(1) Panel Buckling
G(2) Stiffener Buckling

G(3) Skin Strength
G(4) Stiffener Strength

Cross-Stiffened Panel

DV(I) Stiffener Height (in)
D//(2) Stiffener Thickness (in)

D V(3) Skin Thickness (in)
OBJ Panel Mass (lbm)
Stiffener Load Fraction

Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling

G(3) Skin Strength
G(4) Stiffener Strength

PURE SHEAR

Nxy = 10000 lbf/in

7 Cells

4.473
0.040

0.312
43.23
0.000

0.079

-0.20E-6
-0.10E01

0.24E-!
-0.10E01

N/A

0.886
0.267
0.229

40.67

0.237
0.281

0.13E-1

-0.34E-3
0.63E-1

-0.49E00

8 Cells

4.160
0.040

0.293
41.08

0.000
0.091

0.49E-3
-0.10E01

0.91E-1
-0.10E01

0.912
0.188

0.305
47.83
0.043
0.186

0.10E-2
-0.15E-3

0.20E-2
-0.76E00

0.884
0.265

0.211
39.63

0.235
0.320

0.65E-2
-0.36E-2

O.16E00
-0.50E00

D V(i) = Design Variable, G(i) = Constraint. OBJ = Objective Function. N/A = Not Applicable
Constraints G(i) are feasible when negative, violated when positive, range: -1 < G(i) < oo
Skin laminate [-45/45/90/0]s, all plies equal thickness, minimum skin thickness = 0.040 inch
Minimum stiffener thickness = 0.040 inch
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Table B6. Flat Plate and Longitudinally, Diagonally, and Cross-Stiffened Panels Design Data (Com-
bined Compression-Shear)

Flat Plate

D V(I ) Skin Thickness Cm)
OBJ Plate Mass (Ibm)

G(1) Skin Buckling
G(2) Skin Strength

COMBINED COMPRESSION-SHEAR N_,= N_y= N

N= 100

(Ibfhn)

0.212
27.01

-0.23E-6
-0.99E00

Longitudinally Stiffened Panel

D V(I ) Stiffener Height (in)
D/:(2) Stiffener Thickness (in)
D//(3) Skin Thickness (in)
OBJ Panel Mass (ibm)

Stiff. Load Frac. - Comp.
Stiff. Load Frac.- Shear
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

Diagonally Stiffened Panel
D V(1) Stiffener Height (in)
D V(2) Stiffener Thickness (in)

l O V(3) Skin Thickness (in)
OBJ Panel Mass (ibm)
Stiff. Load Frac. - Comp.

0.965
0.049

0.081
11.44
0.187
0.000
0.092

0.91E-2
-0.46E-2

-0.97E00
-0.99E00

0.844

0.058
0.057

9.830
0.423

Stiff. Load Frac. - Shear
Stiffener Mass Fraction

G(1) Panel Buckling

G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

Cross-Stiffened Panel

D V(1 ) Stiffener Height (in)

D V(2) Stiffener Thickness (in)
D V(3) Skin Thickness (in)

0.063

0.256
0.58E-3

-0.13E-3
-0.96E00
-0.97E00

N = 300

0bf/in)

0.305

38.96
-0.14E-5
-0.97E00

1.132
0.080

0.117
16.92

0.236
0.000

0.120
0.22E-3

-0.13E-3

-0.93E00
-0.97E00

0,973
0.093

0.083
15.22
0.485

0,079
0.307

0.75E-3

0.65E-3
-0.91E00

-0.95E00

N = 1000

0bfhn)

0.456
58.19

-0.13E-5

-0.94E00

1.324

0,136
0,173

26.13
0.292

0,000
0.154

0.11E-2
-0.19E-2
-0.84E00
-0.94E00

1,126
0,154
0,125
24.91

0.547
0.099
0,362

-0.19E-5
0.56E-6

-0.81E00

-0.89E00

N ffi 3000
(ibfhn)

0.657
83.93

0.12E-5
-0.87E00

1.535
0.219

0.248
39.22

0.349
0.000

0.191
0.80E-3

-0.50E-3
-0.68E00
-0.88E00

1,229
0.233
0.193

39.49
0.562
0.105

0,377
0.81E-3

0.73E-3
-0.63E00
-0.79E00

N = 10000

(lbfAn)

0.982

125,4
0.93E-4

-0.70E00

1.717
0.352

0.378
61.81

0.388
0.000

0.219
0.87E-3

0.21E-3
-0.30E00
-0.75E00

0.981
0.276

0.377
62.24
0.383

0.054
0.226

0.34E-2
-0.26E-3
-0.33E00
-0.57E00

OBJ Panel Mass (ibm)

SOft. Load Frac. - Comp.
Stiff. Load Frac. - Shear
Stiffener Mass Fraction

G(I) Panel Buckling
G(2) Stiffener Buckling
G(3) Skin Strength
G(4) Stiffener Strength

0.508
0.041
0.061
8.887
0.206
0.087
0.127

0.32E-3
-0.22E-3

-0.96E00
-0.96E00

0.591
0.068
0.086

13.20
0.261

0.114
0.165

0.84E-3
-0.94E-3
-0.91 EO0
-0.92E00

0.707
0.119
0.126
20.62
0.336
0.156
0.221

0.13E-2
-0.13E-4
-0.81E00
-0.84E00

0.836

0.199
0.175
31.38

0.418
0.208
0.287

0.24E-2
-0.11E-2
-0.63E00

-0.68E00

1.003
0.344
0.251
50.85
0.510
0.275
0.368

0.17E-2
-0.25E-3

-0.22E00
-0.34E00

D V(i) = Design Variable, G(i) = Constraint, OBJ = Objective Function

Constraints G(i) are feasible when negative, violated when positive, range: -1 _< G(0 < 0o
Skin laminate [-45/45/90/0]s, all plies equal thickness, minimum skin thickness = 0.040 inch
Minimum stiffener thickness = 0.040 inch

N = 30000

0bfhn)

1.416
180.8

-0.46E-6
-0.37E00

1.257

0.357
0.849
118.4
0.173

0.000
0.085

-0.15E-5
0.21E-4

-0.76E-3
-0.55E00

0.962
0.344
0,808
120.3

0.262
0.031

0,143
0.95E-5
0.43E-4

-0.78E00

-0.32E00

0.910
0,499

0.715
115.9
0.325

0.150
0.213

-0.16E-3
-0.43E00
-0.63E-4

-0.12E00
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(A)

(B)

(c)

Figure CI. Flat Plate Buckled Mode Shapes, Compression: A) 100 Ibf/in B) 1000 lbf_n C) 10000 lbf/in
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(B)
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I , (c)
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(D)

Figure C2. Longitudinally Stiffened Panel Buckled Mode Shapes, 100 lbf/in Compression: A) 1 Cell
B) 2 Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Longitudinally Stiffened Panel Buckled Mode Shapes, lO0 lbf/in Compression, cont'd
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(A)

I.
\

(B)

(c)

(D)

Figure C3. Diagonally Stiffened Panel Buckled Mode Shapes, 100 Ibf/in Compression: A) 1 Cell B) 2
Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Diagonally Stiffened Panel Buckled Mode Shapes, 100 lbf/in Compression, cont'd
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[ [ | --

(D)

_ .o_

Figure C4. Cross-Stiffened Panel Buckled Mode Shapes, 100 Ibf/in Compression: A) I Cell B) 2 Cells
C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Cross-StiffenedPanel Buckled Mode Shapes, I00 Ibf/inCompression, cont'd
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Cl
o

(B)

(c)

(D)

Figure C5. Longitudinally Stiffened Panel Buckled Mode Shapes, 1000 Ibf/in Compression: A) 1 Cell

B) 2 Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells (3) 7 Cells H) 8 Cells
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Longitudinally Stiffened Panel Buckled Mode Shapes, 1000 Ibf/in Compression, cont'd
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(A)

(B)

(c)

(D)

Figure C6. Diagonally Stiffened Panel Buckled Mode Shapes, 1000 Ibf/in Compression: A) 1 Cell B)
2 Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Diagonally Stiffened Panel Buckled Mode Shapes, 1000 lbf/in Compression, cont'd
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(A)

(B)

Figure C7. Cross-Stiffened Panel Buckled Mode Shapes, 1000 Ibf/in Compression: A) I Cell B) 2 Cells
C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Cross-Stiffened Panel Buckled Mode Shapes, 1000 ibf/in Compression, cont'd
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Not Applicable (A)

(B)

(c)

_. I I I

I I o2__!

(D)

Figure C8. Longitudinally Stiffened Panel Buckled Mode Shapes, 10000 Ibf/in Compression: A) 1 CeLl

B) 2 Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Longitudinally Stiffened Panel Buckled Mode Shapes, 10000 Ibf/in Compression, cont'd
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(A)

(B)

(c)

(D)

\
Figure C'9. Diagonally Stiffened Panel Buckled Mode Shapes, 10000 Ibf/in Compression: A) 1 Cell B)

2 Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Diagonally StiffenedPanel Buckled Mode Shapes, I0000 Ibf/inCompression, cont'd
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(A)

(B)

(c)

(D)

Figure CI0. Cross-Stiffened Panel Buckled Mode Shapes, !0000 Ibf/in Compression: A) ] Cell B) 2
Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 cells
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Cross-StiffenedPanel Buckled Mode Shapes, 10000 Ibf/inCompression, cont'd

(E)

(F)

(G)

(H)

Appendix C. Buckled Mode Shapes for Optimum Wing Rib Panels 226



(A)

0

\

(B)
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o '°_ ,'_ (c)

Figure CII. FlatPlate Buckled Mode Shapes, Shear: A) I00 Ibf/inB) lOOO Ibf/inC) lO000 Ibf/in
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J

Figure C12. Longitudinally Stiffened Panel Buckled Mode Shapes, 100 Ibf/in Shear: A) 1 Cell B) 2
Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 (7_,ellsG) 7 Cells FI) 8 Cells
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Longitudinally Stiffened Panel Buckled Mode Shapes, 100 Ibf/in Shear, cont'd
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(D)

(A)

Figure C13. Diagonally StifFened Panel Buckled Mode Shapes, I00 Ibf/in Shear: A) I Cell B) 2 CeUs
C) 3 Cells D) 4 Cells E) S Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Diagonally StiffenedPanel Buckled Mode Shapes, I00 Ibf/inShear, cont'd
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(A)

(B)

L

(c)

(D)

Figure C14. Cross-Stiffened Panel Buckled Mode Shapes, 100 IbfJin Shear: A) I Cell B) 2 Cells C) 3
Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Cross-Stiffened Panel Buckled Mode Shapes, 100 lbf/in Shear, cont'd
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(D)

Figure C15. Longitudinally Stiffened Panel Buckled Mode Shapes, 1000 Ibf/in Shear: A) ] Cell B) 2
Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells

Appendix C. Buckled Mode Shapes for Optimum Wing Rib Panels 234



t

(E)

I

(F)

[ •

0

i

(G)

'(
(H)

i

LongitudinallyStiffenedPanelBuckledMode Shapes,lO00 lbf/_nShear,cont'd
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(A)

(B)

(c)

(D)

Figure C16. Diagonally Stiffened Panel Buckled Mode Shapes, 1000 Ibf/in Shear: A) l Cell B) 2 Cells
C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Diagonally Stiffened Panel Buckled Mode Shapes, I000 Ibf/in Shear, cont'd
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(A)

(B)

/_ _ -

(c)

Figure CI7. Cross-Stiffened Panel Buckled Mode Shapes, 1000 Ibf/in Shear: A) ] CeLl B) 2 Cells C)
3 Cells D) 4 CeLls E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Cross-StiffenedPanelBuckledMode Shapes,I000 IbffmShear,cont'd
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Figure C!8. Longitudinally Stiffened Panel Buckled Mode Shapes, 10000 Ibf/in Shear: A) 1 Cell B) 2
Cells C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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LongitudinallyStiffenedPanel Buckled Mode Shapes, lO000 Ibf/inShear, conz'd
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(A)

! I

I

(B)

Figure C19. Longitudinally Stiffened Panel Buckled Mode Shapes, 10000 Ibf/in Shear, Material Con-
straint Violation: A) 7 Cells B) 8 Cells
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(A)

(B)

(c)

(D)

Figure C20. Diagonally Stiffened Panel Buckled Mode Shapes, 10000 Ibf/in Shear: A) 1 Cell B) 2 CeLls
C) 3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Diagonally Stiffened Panel Buckled Mode Shapes, 10000 lbf/in Shear. cont'd
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(A)

Figure C21. Diagonally Stiffened Panel Buckled Mode Shapes, 10000 Ibf/in Shear, Material Constraint
Violation: A) 8 Cells
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m
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(O)

Figure C22, Cross-Stiffened Panel Buckled Mode Shapes, I0000 Ibf/in Shear: A) ! Cell B) 2 Cells C)
3 Cells D) 4 Cells E) 5 Cells F) 6 Cells G) 7 Cells H) 8 Cells
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Cross-Stiffened Panel Buckled Mode Shapes, 10000 lbf/'m Shear, cont'd
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o (A)

(B)

Figure C23. Cross-Stiffened Panel Buckled Mode Shapes, 10000 Ibr/in Shear, Material Constraint Vio-
lation: A) 7 Cells B) 8 Cells
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